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Abstract

The present paper is the continuation of work [ 18], devoted to the study of an inviscid zero-Mach number
system in the framework of endpoint Besov spaces of type Bgo,r(Rd). r e[l,00]. d =2, which can be

embedded in the Lipschitz class %1 In particular, the largest case Bcl>O | and the case of Holder spaces

C 1 are taken into account.

The local in time well-posedness of this system is proved, under an additional finite-energy hypothesis
on the initial data. The key to get this result is new a priori estimates for parabolic equations with variable
coefficients in endpoint spaces Bgo,r(]l{d). which are of independent interest.

In the special case of space dimension d =2, we are able to give a lower bound for the lifespan, such
that the solutions tend to be globally defined when the initial inhomogeneity is small. There, we will show
refined a priori estimates in endpoint Besov spaces for transport equations.
© 2015 Elsevier Inc. All rights reserved.

MSC: primary 35Q335; secondary 76N 10, 35B65

Keywords: Zero-Mach number system; Endpoint Besov spaces; Well-posedness; Lifespan; Parabolic equations;
Transport equations

* Corresponding author at: 55 Zhongguancun East Road, Haidian District, Beijing 100190, China.
E-mail addresses: [rancesco.fanelli@imj-prg.fr (F. Fanelli), xian.liao @amss.ac.cn (X. Liao).
' Present address: Centro di Ricerca Matematica “Ennio De Giorgi”, Scuola Normale Superiore, Collegio Puteano,
Piazza dei Cavalieri, 3, 56126 Pisa, Italy.

http://dx.doi.org/10.1016/j.jde.2015.06.038
0022-0396/© 2015 Elsevier Inc. All rights reserved.



F. Fanelli, X. Liao / J. Differential Equations 259 (2015) 5074-5114 5075

1. Introduction

In the present paper we will study the following inviscid zero-Mach number system:

0o +div (pv)
o (pv) +div (pv ® v) + VII
div(v+kp~'Vp)

0,
0, (D
0

where p = p(t,x) € R" stands for the mass density, v = v(z, x) € RY for the velocity field and
[T =TI(z, x) € R for the unknown pressure. The positive heat-conducting coefficient k =k (p)
depends smoothly on its variable. The time variable t and the space variable x belong to R (or
to [0, T]) and RY d>2. respectively.

This model derives from the full compressible, heat-conducting and inviscid system as the
Mach number tends to vanish (see e.g. [1.19,24,25.30]). In particular, this singular low-Mach
number limit process is rigorously justified in Alazard [1] for smooth enough solutions. We refer
to the introduction of [18] or the previous literature for more details on the derivation of the
system.

Interestingly, System (1) can also describe, for instance, the motion of a two-component in-
compressible inviscid mixture with diffusion effects between these two components. We refer to
e.g. [20] for more physical backgrounds.

Notice that if we take simply x = 0 (i.e. we have no heat conduction), then System (1) reduces
to the density-dependent Euler equations

d:p +div (pv) =0,
3 (pv) +div(prv®@v)+ VII =0, (2)
dive =0.

We refer to [2,12,13], among other works, for some well-posedness results for System (2). Let
us just mention here that, in [14], Danchin adopted mainly the functional framework of Besov
spaces Bj, .. 1 < p < 400, which can be embedded in the set of globally Lipschitz functions.
There he considered the case of finite-energy initial data, or the case when p € [2, 4], or the case
of small inhomogeneity. All the assumptions are, roughly speaking, due to the control of (the low
frequencies of) the pressure term. In [15], Danchin and Fanelli treated the endpoint case B;O,r,
giving. besides, a lower bound for the lifespan of solutions in the case of space dimension d = 2;
infinite energy data were considered as well, for which one has to resort to the analysis of the
vorticity of the fluid.

When the fluid is supposed to be viscous, instead, System (1) becomes the viscous zero-Mach
number system

drp + div (pv) =0,
3 (pv) +div(pr ® v) —dive + VIT = 0, (3)
div(v 4+ kp~'Vp) =0,

where we defined the viscous stress tensor
1
o =2Svtndiveld,  Svi=(Vo+ (Vu)l), 1d : the identity RY x RY matrix,

with two positive viscous coefficients ¢, n.
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The viscous system (3) is the low-Mach number limit system of the full Navier-Stokes equa-
tions, and hence it describes for instance the motion of highly subsonic viscous fluid. See [I,
9.11.17,22.23.26.27] and the references therein for further results. Let us just mention that,
in [16], Danchin and Liao addressed the well-posedness issue in the general critical Besov spaces
Bi{f’l‘ (RY) x (Bi;/!plrl(Rd))d. with technical restrictions on the Lebesgue exponents pi., pa.
Under a special relationship between the viscous coefficient and the heat-conduction coefficient,
which is a sort of remainder of the BD-entropy structure of Bresch and Desjardins for such kind
of systems (see e.g. [6-8] and the references therein). Liao showed in [23] the global in time
existence of weak solutions and in particular global in time well-posedness result in dimension
two.

To our knowledge, there are just few well-posedness results for the inviscid zero-Mach num-
ber system (1). For instance, in [4] Beirdo da Veiga, Serapioni and Valli proved existence of
classical solutions on smooth bounded domains.

In our previous work [ 18], instead, we investigate the well-posedness in the functional frame-
work of general Besov spaces B;’r (RY), p € [2.4]. which can be embedded in the Lipschitz
function class. There, we reformulated System (1) by introducing a new divergence-free velocity
field. Similarly, let us immediately perform this invertible change of unknowns here, to introduce
the set of equations (see (6) below) we will mainly work on: for the details we refer to [16,18].

For notational simplicity, we introduce three “coefficients”, a = a(p), b = b(p) and L = A(p),
such that

Va=kVp=—pVb, rA=p '>0, a(l)=>b(1)=0. (4)
Then, we introduce the new divergence-free “velocity” u and the new “pressure”  as
U= v+fcp_le=u—Vb, 7 =0—-«xdp=1I1-0a. (5)
Therefore, System (1) can be rewritten as the following system for the unknowns (p, u, 77):
op+u-Vp—div(kVp)=0,
i+ (u+Vb) -Vu+ Vo =h, (6)
divu =0,
where the new nonlinear “source” term £ reads as
hip,u) = p "diviv®@Va) = —u-V?b— (u-V)Va — (Vb-Vi)Va —div(Vb @ Vb). (7)

In the above mentioned work [18], we studied the well-posedness of the zero-Mach number
system, in its reformulated version (6), in the setting of Besov spaces B;’r(Rd) embedded in the

class C%! of globally Lipschitz functions, that is to say for

d d
s>14+—, or s=1+— and r=1. (C)
P P

Such a restriction is in fact necessary, essentially due to the transport equation for the velocity
field: preserving the initial regularity demands u to be at least locally Lipschitz with respect to
the space variable. On the other hand, the non-linear source term / requires the control of this
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Besov norm on V2 p: this is guaranteed by the smoothing effect of the parabolic equation for the
density. Due to technical reasons, in [18] we had to impose the additional condition

p e [2,4]. (8)

Indeed, this hypothesis (8) ensures that the “source” term /., composed of quadratic terms, be-
longs to L2(R?). Inturn, due to the elliptic equation in divergence form for the pressure 7

div(AVa) =div(h — (u + Vb) - Vu),

this hypothesis (8) ensures that also the pressure term Vo belongs to L*(R?), which gives a
control on the low frequencies of the pressure term.

Finally, under conditions (C) and (8), we [18] proved local in time well-posedness of Sys-
tem (6) in general Besov spaces B;’r(R‘f), as well as a continuation criterion for its solutions
and a bound from below for the lifespan in any space dimension d > 2.

In the present paper we propose a different study. rather in endpoint Besov spaces B, , which
still verifies condition (C) (with p = +0¢ of course), in the same spirit of work [15]. This func-
tional framework includes, in particular, the case of Holder spaces of type C'** and the case of
Béo’ ;- Which is the largest Besov space embedded in the set of globally Lipschitz functions, and
so the largest one in which one can expect to recover well-posedness for our system.

We also add a finite-energy hypothesis on the initial data, which is fundamental in order to
control the pressure term, just as the above condition (8) assumed in [18].

Then we are able to prove the local in time well-posedness of System (6) in the adopted end-
point functional framework. The key point of the analysis is the proof of new a priori estimates
for parabolic equations with variable coefficients, not necessarily close to a constant, in Besov
spaces B, ,, see Proposition 4.1. They state that the parabolic gain of regularity (of two orders
as for the heat equations) holds true also in this setting. Roughly speaking, they are obtained by
use of a “microlocal” analysis argument: first of all, we localize the parabolic equation in space,
in order to work on small sets, where we only have to deal with a non-homogeneous heat equa-
tion; then we stick these localized parts together, keeping in the same time the Holder regularity.
We refer to the beginning of Subsection 4.1 for some additional insights about the proof of this
result.

The global in time existence of strong solutions to the inviscid zero-Mach number system is
still an open problem, even in the simpler case of space dimension d = 2. However, similarly
as in [15], we are able to move a first step in this direction: by establishing an explicit lower
bound for the lifespan of the solutions in dimension d = 2, we show that planar flows tend to be
globally defined if the initial density is “close” (in an appropriate sense) to a constant state. Such
a lower bound improves the one stated in [18] which holds for any space dimension. It can be
obtained resorting to arguments similar as in Vishik [28] and Hmidi and Keraani [21]: the scalar
vorticity satisfies a transport equation, and then one aims at bounding it /inearly with respect to
the velocity field. As we encounter here non-solenoidal velocity field v, one has to bound the
vorticity linearly in v and divv (see Proposition 4.4). Since the potential part of v just depends
on the density term p (see (1)3). the parabolic effect gives enough regularity to control div v.

Let us conclude the introduction by pointing out that we decided to adopt the present func-
tional framework, i.e. B , N L2 just for simplicity and clarity of exposition. Actually, combin-
ing the techniques of [18],with the ones in [14], it’s easy to see that our results can be extended

to any space B;f” which satisfies condition (C) for any | < p < +00.
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Before going on, we give an overview of the paper.

Next section is devoted to the statement of our two main results.

In Section 3 we briefly present the tools we are going to use in the analysis, namely
Littlewood—Paley decomposition and paradifferential calculus, while in Section 4 we prove fun-
damental a priori estimates for parabolic equations (Proposition 4.1) and for transport equations
(Proposition 4.4) in endpoint Besov spaces.

Finally, Section 5 contains the proofs of our two results.

2. Main results

As explained in the introduction, in the sequel we will deal with system (6)—(7) in endpoint
Besov spaces Bgc’r(Rd), d = 2 with the indices s € R and r € [1, +00] satisfying (C) (for p =
+00). i.e.

s > 1 or s=r=1. 9)

Recall that this is sufficient to guarantee the embedding Bgo,,,(Rd) — 0! (Rd).

In order to ensure the velocity field u to belong to B;O’r(Rd), the source term £ in the
velocity equation, which involves two derivatives of the density V2p, should be in the same
space. This will be provided by new a priori estimates for parabolic equations in endpoint
Besov spaces B, (see Proposition 4.1 below), which allow the gain of two orders of reg-
ularity for the density as time goes by. For this reason we take the initial inhomogeneity
co=po— 1€ B&,r(Rd), and hence we will get the density in the so-called Chemin—Lerner
spaces ;’:OO([O, T1; B, r(Rd)) NI ([0, T71; ng%(Rd)). We refer to Definition 3.6 for the pre-
cise definition of these ,time—dependent Besov sphces.

Moreover, in order to avoid vacuum regions, we will always suppose the initial density to
satisfy

0 < pe < po(x) < p*, x eR4.
By applying maximum principle on the parabolic equation (6), one gets a priori that the density
p (if it exists on the time interval [0, T']) keeps the same upper and lower bounds as the initial
density pp:

0<p<p(t,x)<p*, Vrel0,T], xeR".

Hence, applying the divergence operator to Equation (6)2 gives an elliptic equation for 7 of the
form

div(AVma)=div(h —v-Vu), with A =A(p) > Ay = (p*)_l > 0. (10)
By aresult in [14], we hence have a priori energy estimates for Vr (independently on p):
A Va2 < |k —v-Vu 2.

This gives low frequency informations for V.
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One then considers the following energy estimates. First of all, the mass conservation law (6);
entails (provided u € L (L))

t

1 1

3 [ 10— 1P+ [ [xVorarar = S0 — 11z g (in
Rd 0 Rd

Next we rewrite the momentum conservation law (6); into

pdu+ pv-Vu+Vr =div(v® Va) =u - V2a + AbVa + Vb - V?a. (12)

Then, using equation (1); and divu = 0, taking the Lz(Rd) scalar product between (12) and u
entails

1d
2 p\u|2d.x Ef(pB,u—I—pv-Vu—l—VJT)-ud.x:(u-V2a+AbVa+Vb-V2a,Lt)

R4 R4

L2(Rd)
(13)

Recalling the definitions of @ and /4 in (4), one bounds the right-hand side of (13) by (up to a
multiplicative constant depending on p, and p*)

(©'@ lulif> + IVpI72). with
I
Or) = f (uvml}:m + 1Vplie + 1V20ll= + uvzpu%x)dr’.
0

Hence if (pg— 1. ug) € L2(RY) and ©(T) < 40oc (this will be ensured by Besov regularity), then
we gather

u.p—1e LWL RY), Vp e LA(LARY))

and hence i € LY([0, T]: LA(RY), Vrr € LY([0, T]; L2(R9)Y).
To conclude, we have the following local-in-time wellposedness result for System (6).

Theorem 2.1. Let d = 2 be an integer and take s € R and r € [1, +00] satisfying condition (9).
Suppose that the initial data (po, uo) fulfill

po—1l.ug € BS (RHONLARY) ., py€lpsp*]l,  divug = 0. (14)

Then there exist a positive time T and a unique solution (p.u, V) to System (6) such that
(0,u,Vm):=(p—1,u, V) belongs to the space E}(T), defined as the set of triplet (o, u, V)
such that
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0 € C([0,T1; By, ,(RO) NI ([0, T]; BLZ(RY)) N C ([0, T]; LA(RY)),
Vo € LX[0.T]: L*RD). pe=o+1=<p*on[0,T] xR,
w e C(10, TI; BS, , (RD)! n C([0, TJ; LARY),
Va e L1(0, T1; B, (RD) N LY(10, T1; L2®&),

(15)

with C,, ([0, T1; BS, ,(RY)) if r = 400.

Remark 2.2. Let us remark the well-posedness result for the original system (1). According to
the change of variables (5), one knows

u="Pv, Vb=0Qv, where  Qu(g) = —(&/|E))E-T(E), Pv=v— Qu.

Hence, for the original system (1), if the initial datum (po, vo) satisfies
0<pe<po=p*, Vb(po)=Quo,  po—1,Puwe B (R)NLIRY),

with s, r satisfying (9), then there exist a 7 > 0 and a unique solution (p, v, VII) to System (1)
such that p, < p < p* and

o=p—1€C([0.T]; B ,RH)NL([0. T]: BL2®RD) N C ([0, TT; LARY)).
Vo e L*([0. T]; L*RY)),
PveC([0,TT; By, (R)) N C([0, T LARY), ve ([0, T B HRD),
VIl e L'([0. T1; B, ,(RY)),

with C,y ([0, TT; BS ,(RY)) if r = +o0.

Remark 2.3. As said in the introduction, we can replace the Besov space Bgo,r(Rd) in Theo-
rem 2.1 by any general Besov space BS, .(R%), p € 11, 4+00] such that condition (C) is fulfilled.

p.r
The proof is quite standard, and it goes along the lines of the one in [18], with suitable mod-
ifications corresponding to the finite energy conditions. One can refer also to paper [14], where

an analogous result is proved for the density-dependent Euler equations.

If p=1, System (6) becomes the classical Euler system. For this system, the global-in-time
existence issue in dimension d = 2 has been well-known since 1933, due to the pioneering work
[29] of Wolibner. For non-homogeneous perfect fluids, see system (2), it’s still open if its 2-D
solutions exist globally in time. However, in [15] it was proved that. for initial densities close to a
constant state, the lifespan of the corresponding solutions tends to infinity. We have an analogue
result for our system and for simplicity let us just state it in the following theorem for the case
with the initial inhomogeneity smaller than “1”.

Theorem 2.4. Let d = 2, and let us assume the hypotheses of Theorem 2.1 and
leo =Tlig! w2y = 1-

Then there exist a constant ¢ > 0 ( depending only on py, p*, s, r) such that the lifespan of the
solution to System (6), given by Theorem 2.1, is bounded from below by the quantity
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(& (& C

— log| = log|1+————1]], (16)
1) (r% c( |PO_1”B;O_](R2)))
where we defined g =1+ ||pg — 1 HiZ(RZ) + ””0”L2mB;o (B2

Remark 2.5. We can just consider in (16) the limit Besov space norm B;O ](Rz). instead of the

general Besov norm BY F(Rz). In fact, similar as in the proof of the continuation criterion in [18],
by classical commutator estimates and product estimates (see Proposition 3.4 and Proposition 3.5
below), one knows that if, on the time interval [0, T*], T* < 400, one has

T*
(V. 0) 26 (o)) + f (1 Vil g, + V20l oo, + IV ||Lm(Rz))dr < 00,
0

then the solution (g, 1) with the initial data (gq, uo) € Bgo,r(Rz) will be well defined in the
solution space E;(T*). On the other side, the above continuation condition can be ensured if one
only has the solution defined in the limit space Ell (T*).

Before going on, let us introduce some notations. We agree that in the sequel, C always
denotes some “harmless” constant depending only on d, s, r, ps, p*, unless otherwise defined.
Notation A < B means A < CB and A ~ B says A equals to B, up to a constant factor. For
notational convenience, we denote

o=p—L
3. A short review of Fourier analysis

In this section, we recall some definitions and results in Fourier analysis which will be used
in this paper. Unless otherwise specified, all the presentations in this section have been proved
in [3], Chapter 2.

Firstly, let’s recall the Littlewood—Paley decomposition on the whole space R¥. Fix a smooth
radial function y supported in the ball B(0, %), such that it equals to 1 in a neighborhood of

B(0, %) and is nonincreasing over R . Define ¢(§) = X(%) — x(&). The non-homogeneous
dyadic blocks (A ;) jez are defined by2

Aju:=01if j<-2, A ju=xDu and Aju :=tp(27jD)u if j>0.
We also introduce the following low frequency cut-off operators:

Sju:=x(27jD)u= Z Aju for j=0, and S;u=0 for j<0.
i=i-1

One hence defines non-homogeneous Besov space By, r(IRd) as follows:

2 In what follows we agree that f (D) stands for the pseudo-differential operator u — F~1(f (&) Fu(£)).
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Definition 3.1. Let u € S’ s € R, (p,r) € [1, 00]*. We set

1

”HHB}\'”_(R(]) :=( Z 2m‘|A ”lLP(Rd)) if r<oo and

el o = sup (2714 jul oz ).
Jz=

. K d . . . . . .
The space By, ,(R7) is the subset of tempered distributions u such that |lu HB%(RH:) is finite.

Recall that, for all s € R, we have the equivalence H® = 7 2 while for all s € R4\ N, the
space BY, , is actually the Holder space C*. If s € N, instead, we set Cj 1= B, . to distinguish
it from the space C* of the differentiable functions with continuous partial derivatives up to the
order s. Moreover, the strict inclusion Cg < C7 holds, where Cf) denotes the subset of C*
functions bounded with all their derivatives up to the order s. Finally, for s < 0, the “negative
Holder space™ C* is defined as the Besov space B .,

For spectrally localized functions, one has the following Bernstein’s inequalities:

Lemma 3.2, There exists a C > 0 such that, for any k € 7T, L eRY, (p.g) e [l,oo]2 with
p <gq, then

1
Supp@ € B0, 1) = lull oty < CAF ™0 ull o gy

Suppit C (& eRY /h < |&] <20} = C A lull Lo ey < 11VFull oy < TVl o -

We remark explicitly that by previous lemma one has, for any f € L*(R9),

A1 fllpoomey = ClA-1 fl 2@ay = CNf Il L2@ay-
One also has the following embedding and interpolation results:

Proposition 3.3. B} ,, (RY) is continuously embedded in B} m(Rd) whenever 1 < p; <
p2 <00 and

sp<sy—d/pr+d/py or sy=s1—d/p+dfpr and 1 <r; <r; <o0.

Moreover, one has the following interpolation inequality:

lolpg ey < Cllolp g, HQHBM(RC, Vs’ ls.s +2] (7

IVl o (Rd)_C||vn||L2(Rd)||vn|| gy VS <s wiha=aG") e ©.1). (18)

One also has the following classical commutator estimate:
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Proposition 3.4. If s > 0, r € [1, 00], then there exists a constant C depending only on d, s, r
such that

t

[ 2 10890, @ < € [ (1900 10ne, + 1961y 19915 )
0

0
(19)
Moreoverifs e (0,1) (ors € (—1,1) if dive = 0), then there holds
t '
] 27 g, 051 9], @ < € f IVl ¥ l5, de'
0 0
Let us recall Bony’s paraproduct decomposition (first introduced in [5]):
uv = T,v + Tyu + R(u,v), (20)

where we defined the paraproduct operator T and the remainder R as

TuU:=ZSj,]LrAjU and R(u,v) :=Z Z Ajuljv.
i

Joli=il=l
These operators enjoy the following continuity properties in the class of Besov spaces.

Proposition 3.5. For any (s, p.r) € R x [1, 00]% and t > 0, the paraproduct operator T maps
L% x Bj, . in B, ,, and By, x B;, . in B}, [ Moreover, the following estimates hold:

ITuvl By

s, = C\|L!||L°C||VU||B-;;1 and HTuU”B;;‘—; =Cllu ||B;,m|\Vv||3;;;l-

For any (s1, p1.r1) and (s2, p2,r2) in R x [l,oo]2 such that sy +s2 >0, 1/p:=1/p1 +
1/pa < 1, the remainder operator R maps B}, ,, x By, in By with 1/r := min{1/r| +
1/ 1),

If s = 0, then one can easily bound the product uv as follows:

luvlip;, < Cllullellvlips, + lullas, lvllze). 21)

p.r p.r

When solving evolutionary PDEs in Besov spaces, we have to localize the equations by
Littlewood—Paley decomposition. So we will have estimates for the Lebesgue norm of each
dyadic block before performing integration in time. This leads to the following definition. in-
troduced for the first time in paper [10] by Chemin and Lerner.

Definition 3.6. For s € R, (¢, p,r) €1, —i—OO]3 and T € [0, +o0]. we set

g s o= |27 A u(e ) .
gy ams,) = | (27080l g 0, il

We also set Cr(BS, ) = L¥(B3,,) N C([0. T]; BS, ).
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The relation between these classes and the classical L?(B';”) can be easily recovered by
Minkowski’s inequality:

IA
IA
-

H””L;(B;_r) if ¢

v
v
-

[ ””HZ‘}(B»;”)

”“”E‘}(Bf])r) H””L‘T’F(B;_r) if g

Combining the above Proposition 3.5 with Bony’s decomposition (20), we easily get the fol-
lowing product estimates in Chemin-Lerner space:

Corollary 3.7. There exists a constant C depending only on d, s, p, r such that

7 . < ~ ~
vz sy, < € (Nl oy l0lgas ) + Tl g 10l o )

| 1 1 1 1

q g1 492 43 44

One also has the estimates for the composition of functions in Besov spaces.

Proposition 3.8. Let F : R — R be a smooth function. Then for any s = 0, (¢, p,r) € [1, +00]’,
we have

‘IV(F(G))|IE;(B;7]) =< C(Ffs

IaHL%O(LOQ))”VQHZ?(B;—,_I)

If furthermore F(0) =0, then |\F(a)||zz§(3;;.r) < C(F/, alng}o(LoC)) “a”Zi,’,(B;,.,)'

In the next section we will need also some notions about homogeneous paradifferential cal-
culus: let us recall them. As above, we refer to Chapter 2 of [3] for a detailed presentation: we
just point out here that, in the homogeneous setting, the definition of Besov spaces has to be
slightly modified. working with the class of distributions &) defined to be the subset of tempered
distributions « with ||#(2=/ D)u||;~ — 0 as j — —oco for any # € D(R?) (see Definition 1.26
of [3]).

The homogeneous dyadic blocks (Aj)jgz are defined by

Aju =@/ Du it jeZ.
The homogeneous low frequency cut-offs are defined by:
Sjlt = )((27jD)u for jeZ.

The homogeneous paraproduct operator and remainder operator are defined by:

Tuv:zzL@j,wAjv and R(u,v) :=Z Z AjuAjfv‘

= JEL|j' —jI=]

Notice that, for all « and v in ). the sequence element (S i_1u A ju) is spectrally supported in
dyadic annuli. The analogous of Proposition 3.5 holds true also in the homogeneous setting.
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Let us set C* = B;Oqoo. for s > 0, to be the homogeneous Holder space. Recall that. for any

u € C*, the equality u = ZjEZ Aju holds. For homogeneous Holder spaces and time-dependent
homogeneous Holder spaces, we have the following characterization, which will be used for the
localization argument in Subsection 4. 1.

Proposition 3.9. Ve € (0, 1), there exists a constant C such that for all u € S,

llue(x 4+ y) — u(x)|| Lo

|y

< Cllull ¢e, (22)

Ly

CMullge < ‘

and

t

/ '

y (e’ x + ) — ' )l ge

C™ u HE}(C‘&) =< [ e dr’ < CHHHE:] () (23)
J )

Ly

Proof. The proof of (22) can be found at page 75 of [3].
Let us first show the left-hand inequality of (23). Since

Aju(r.x) = Zjdfh(Zj_)')(Lt(I,.x —y) —u(t,x))dy,
]Rd
where /i denotes the inverse Fourier transform of ¢, then we easily find

Tt Tt
(', x — y) —u(t’. x)| poe

fziquju(r’,-)uL;c 52fdf2ff|_v|f\h(2fy)| T = dr’dy
B

0 Rd

t

u(t', x +y) —u(t', x 00
scf”( ,)E( )”LIdI,
v
0 Ly

This relation gives us the left-hand side inequality of (23).
The inverse inequality follows immediately after similar changes with respect to time in the
classical proof: let us just sketch it for reader’s convenience. Recalling

Aj= Y AjAjp,

li=J'l=1

we rewrite Aj(u (r.x +y) —u(t, x)) as follows

Ajut,x +y) —u(t,x) = Z 27d /(h(2j(x +y—2) —h(2(x — z)))Ajfu(r, 7)dz
=751 pa

|
-3 Zjd(f@j_\‘)-Vh(Zj-+2j5)')ds)*(Ajft!(r, -)).
0

l7=J7'1=1
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Therefore there holds

t
A r,x + —u(r . .
H (Ll'( X I\')|E L’( -x))”]-ax df <C[2_]‘y|176 Z HA_j"u(t,)HLEOdI,-
y

0 0 li—J'l=1

On the other side, it is easy to see that, for any j € Z,
1A (@, x4 y) —u’ )l < 2014u() L.

Let us choose the integer j, such that | j < 2y < Iy and decompose

u(t', x +v)—u(', x)= Z Aj(u(rf,x +y)—u(t’,x))+ Z Aj(u(r’,x + ) —u(t', x)).

jfj}' J=Jy

Hence one arrives at

f
’/ H J— ! y
(e’ x +y) —ult’, ),

Ve a
f Aju()]
<cC 27|yl A ju(ty | poods’ +2 jiwd’
g%! ] j%;J ()l dt’ + Z;O =
t
=C Yy @' ffsz > MAju()ligedt +2 ) 2 y)” f]szna u ()| edt’
J=<Jy [i=i'l=1 J=ly 0
t
<C(Z(2J|w>‘ Y @ €)supf2fw|a u(r') || Ledr’.
i<iy i=Jy i€t 0

Noticing that € € (0, 1) and the choosing of j,. the right-hand side inequality in (23) easily
follows. 0O

Remark 3.10. From the above proof, it is straightforward to see that the equivalence (23) can be
generalized to a function sequence {u,},<w in the following term:

t

sup[sup2j6||Aj(z¢n)(t',.x)||L?cdt’N
jeZO nelN ’

sup — = dr’ (24
0 nelN [yl

t
f i (. x + ¥) = 4 (7' ) | 10
Ly

Finally let us recall the classical a priori estimates for heat equations in homogeneous Besov
spaces (see Section 3.4 of book [3]).
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Proposition 3.11. For any s € R, there exisis a consiant C such thai

f
. _12j . N (f_\2] . .
1A F()ll =€ (e ’2’|\Ajfo|uw+fe COMNA P dr), 23)
0

where fo, f, F € S;ﬂ (RY) and they are linked by the relation

t
F(t,x) =€!Af()+]€(t_[’)Af(]‘,) dr’.
0

4. A priori estimates for parabolic and transport equations in endpoint Besov spaces

The present section is devoted to obtain new a priori estimates for parabolic and transport
equations in endpoint Besov spaces. These estimates will be the key point to get our results.

In the first subsection we will prove a priori estimates for the parabolic equations in Chemin—
Lerner spaces (essentially Holder in space variable). This will be useful in the proof of Theo-
rem 2.1.

In the second subsection we will prove refined a priori estimates in the endpoint space BO
for linear transport equations. This is a generalization of similar results in [21.28], and it Wlll be
fundamental in getting lower bounds for the lifespan of the solutions.

4.1. Parabolic estimates in BS, ,(R%)

The present subsection is devoted to state new a priori estimates for linear parabolic equa-
tions with variable coefficients in divergence form (see (26) below), in endpoint Besov spaces
L%.(BS, ). which are of independent interest.

Proposition 4.1. Let p be a smooth solution to the following linear parabolic equation

drp —div(«Vp) = f, (26)
£li=0 = po.

where k, f, po are smooth functions such that
0<pe<pox)<p*, 0<iy<«(t,x)<«* Vte[0,+00), Vx eRY.

Lets > 0, r €[1, oc] and take any € € (0, 1), then there exists a constant C (depending on d, s,
€, F, Py, P¥, Kx, K%) such that the following estimate holds true:

e(] €) C || ~
1Pl zee B, , RaNAT! (B2 (RN = [‘ Ikl oo e Rd))i| X ("f)O'Béc,r(Rd) Az Bs, @)

t

2/(1
[ ([ + 10, ] ot o
0



5088 F. Fanelli, X. Liao / J. Differential Equations 259 (2015) 5074-5114
+ IVl o ay IV Rl B, mey

+ IVellps, , me) HV:OHLOC(R“’)) dfl)- (27)

Remark 4.2. By the interpolation-type inequality in Chemin-Lerner space (in the same spirit of
(17) and see e.g. the estimate (42) for Jj (41) on Page 5095 below) and Gronwall’s lemma, it is
easy to derive the following a priori estimate for p from (27):

Hp”Z?O(B;‘,(Rd))ﬂz}(B;fg(Rd)) < Cy exp{C1 K (1)} (”POHBgC_,(Rd) + Hf”E'I(BgOJ(Rd))) s
where C| = C(¢) depends on d, s, €, r. ps, p*. k4. * and ”KHL;X.‘(CE(Rd)), and

t
2/(14s),1
KO = [ (14 1961, + IV ar
0

Proposition 4.1 will be proved in three steps. The strategy is the following.

First of all, we localize the function p into countable functions g,. each of which is supported
on some ball B(x,,§), with small radius é € (0, 1) to be determined in the proof. Hence up
to some small perturbation, g, verifies a heat equation with a time-dependent heat-conduction
coefficient (see System (30) below). Consequently, changing the time variable and making use
of estimates for the heat equation entail a control for ||AjQ,, (t)|| o for any n. This will be done
in Step 1.

In Step 2, thanks to Proposition 3.9 or Remark 3.10, we carry the result from {g,} to p, in
order to get Holder type estimates for p. Note that Maximum Principle applied to parabolic
equations has already given us the control on low frequencies of the solution:

f
1ol ez < ool + ] T (28)
0

Then we have just to exhibit a control for p in Holder space Z?o (C"E) N Z,l (C"2+€) which, thanks
to Proposition 3.9, can be bounded locally by (up to a low-frequency control)

t

I(t) :=supsup 216”51-9" ”L?C(Loc) + sup/sup 2 (2+€) ||Ajgn(r’)|\L°°dﬂ' (29)
JEL n JEZL n

The result in Step 1 helps us to control /(). but some complications are due to the fact that we
work with a double decomposition, both in space and in frequencies, which do not commute:
this will be handled by a careful analysis of each remainder term (coming either from space or
frequency localization), combined with a suitable choice of the radius of the balls §. Finally, let
us just mention that the interpolation inequality in Chemin—Lerner space (see e.g. (42) below)
helps to control the lower order term.
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Step 3 is devoted to the proof of the estimates in general Besov spaces of type B, . A lo-
calization in Fourier variables of the system, the application of Hélder estimates (established
in Step 2) for each dyadic term and a careful calculation on commutators will finally yield the
general result.

We agree that in this subsection {g,(f, x)} always denote localized functions of p(z,x) in
x-space, while p; as usual, denotes A ;p (localization in the phase space).

4.1.1. Step 1: estimate for Ajgn

Let us take first a smooth partition of unity {1, },en subordinated to a locally finite covering
of R, depending on some parameter § > 0. We suppose that the ¥,’s satisty the following
conditions:

(i) Supp, C B(x,,48) = B,, with § < 1 to be determined later;
(i) Y, yn=1:
(i) 0 <y, <1, with ¢, =1 on B(x,,5/2);
(V) V"9, [l < €871, for ] < 3:
(v) foreach x € RY there are at most Ny (depending on the dimension d) elements in {V/,, },en
covering the ball B(x, §/4).

Now by multiplying v, to Equation (26), we get the equation for o, := p,, which is com-
pactly supported on B,;:

0100 — KnAoy = (K — kp) Aop + gn. (30)
Qn'r:O =00,n = \anO- )

with the time-dependent coefficient

1

_n I) = i,y d / N * N
Kn (1) vol(Bn)_[K( ) dy € [ky, k7]
Bﬁ
and the remainder term
gn=Vi Vo, =2V, -Vp — (k Ay + V- V) p + fi,. (31

In order to get rid of the variable coefficient «,,(¢), let us make the one-to-one change in time
variable

i
T:=1(1) =f:?n(f’)dr’. (32)

0

Therefore, the new unknown

an(fsx) :ZQH(I7X)~

satisfies (observe that ‘f;—f =k, (1))
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kn(T) ~

{ 90— AT = (EG —1) 88+ BE =Cu 0, (33)

5}1 |r:0 =00,n;

where K (t, x) =« (t, x), K, (7) =k, (1), p(7,x) = p(t, x), gu (7, x) = g, (£, x). We then can apply
Proposition 3.11 to the above heat equation to get

T
o~ 22 2~
1Al < (e f”||AfQo,nuLoo+]e YA G (s) 2 s ).
0

By virtue of the one-to-one change of time variables (32), we arrive at from the above that

!
- ot 192j - ot = 1a2j - _
llAj@n(r)HmosC(e Jo ' A 0o o + f UELES HAjGn(r’>||Lomn<r’>dr’),
0

where G, is a function supported on B, defined by

K (t, x) _
K (1)

gn (1, X)

Gn(T,X)=(

Noticing ,, € [«y, «*], we actually have

14
2

. 2j . 2j ’ .
13 j0n )l = (24 jooll 10 + f A6, s dr ). (39)
0

4.1.2. Step 2: Holder estimates for p
Now we come back to consider p =, 0». Thanks to Proposition 3.9 we have

13
x4+ yv)—p, )| Lx
||p\|z;(c-6)sc]”“ -iyf( Mg 4y
/ _

Ly

t
o', x+y)—p@', x)| 12

<C sup . *dr’
y|=5/4 Ry
0
t
+ C sup ‘Ip(f,'x+"!)_p(II’X)HLEOdt’
Ivl<d/dy |v|€ '

whose second term can be controlled by (noticing the assumption (v) on the partition of unity

{¥n})

NgC  sup * dr’.

ly—z|<é/4

f
lon(' x +y) —on(t' . x +2) |1
Sllp ‘\' ‘6
n y—2z

0
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Thus, keeping in mind Remark 3.10, we find that

I3
Nz e SCS_Ef ||P‘|L°°df’+NdC5_u§f511P2jE||Aan(f’)||L°°df,-
je n
0

Similarly (with L' replaced by L> in the time variable). we have

HPHZIOO(Ce) <C§~ E”P”L, (L) -|-Csupsup21€HAan\|Lf (L)

JEL n

Since V2p = Zn(Vzgn), from the same arguments as before we infer

t t
IPNzy 2oy < CIVpllg ey < €87 [ IVpllzeds’ + Csup f sup 2| A V20 (1) [ vt
Jje n
0 0
Thus we get
oIz otz < €5 (Iolram + [ 1Fplmar’) + CTa), (36)

with /() defined in (29).
We next control [ (¢): recalling the estimates for ||A ;g (¢)||z in (35), we know that

1) = Csupsup(2°| A ool +27° f 18, Gu()llzxdt’)
JEZ n

2
+Csup[sup ) 2He) p—hs21 HAJQO,n”LOO
JEZL

i

n [ ) 2+e€) ;i 22 (1=t I AjG”(;”)”Lmdr”)dr’.
0

Noticing fé 22 g=res 21 gy < 1 /ky, I (1) can be bounded as (by Young’s inequality)

1

1(t) < Csupsup 2j6||Aj90,nHLoc + Csupfsup 2j6|\AjGn(r’)||Loodr'
J€Z n jEZO n

t

<Csuplloonllee +C supfsup i€ |A;Gu(t')|| Loodr’.
n J n



5092 F. Fanelli, X. Liao / J. Differential Equations 259 (2015) 5074-5114

Recalling the definition (34) of G,,, we next control the second term on the righthand side by
decomposing it into two parts [;, i =1, 2:

- Kk(t', x) ,
(G ~aento)

A ) (gn(f,,x))
T\ k()

From now on let us fix some positive time 7p € R* and we will always consider in the sequel
on the time interval [0, #y].
Firstly, by Proposition 3.9, there exists a positive constant C such that

dr’,
L

t
I1(1) :== sup/suij6
jO n

de’.
L

t
L(t) = sup/supﬂe
J 0 n

i (1, x) — &k (t, V| < Cllxll oo e lx =¥, Va,ye RY, 1 €[0, 10]. (37)
o

Notice «, > i, > 0, which ensures that, for all ¢ € [0, £p],

_ _ 1 _
i /& — Ul ooqp,) <xy ! vol(By) f(x(r,X) —(t,y))dy < C\IKIIL%(CG-)K* €. (38)
BIJ

LN(BH)

Then, by Bony’s decomposition for products, it is straightforward to deduce the following esti-
mates by Proposition 3.5:

. K(t', x) .
(5 - 1)2enen)

<€ N k@ ) k) = 1 fey 187 A 1122

27€

Ly

lj'—jl<3
1027 3 Ay (x@ /e = 1)| lae @)l
i —il<3
+c Y 2-U'—Depi'e Ajf(/c(z’,x)/fzn(f’)—1)HLOOHAQH(I’)IIL00.
J=j=3

By view of Inequality (38), we have correspondingly the following bound for I1(z), t € [0, 1],

t

N = Clill g e sup [ sup27014; 20,0 1
J n

<I@)

f
+Cf”x(r’,x)HCE sup || Aon (') L~ de”.
0
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Recalling the definition of p,, := © Vr,, it is easy to see that
IA0n () [ < AUl llp(t) ]2 + 20V Ynll Lo IV ()|l oo + 1A (27} ]| Lo
< C8 2l p( e + €57 V@)L + 120 [ Lov.

Thus I, () is bounded as (noticing ™| Vo (1) |0 < CE™ 2| p(t) |10 + || Ap ()| 1))

t
L) = CIIK\IL;Ef(c'e)(SGI(T)-O-Cf e (', )l e GNPl + 1 Ap )| Low)dr'.
0

Similarly, we get by Proposition 3.5 (recalling the definition (31) for g,)
t

L(r) < CsupfsuijEHAjg,,(t’)llLoodf'
J n

t

<€ [ (Is@lec 6™ TP+ 5 20l
0

F Ve e o) e + V() )
Ve e (o) I grse + 8 o) lge +87 o) L)

+ VP E e +877 p () 11x) ) +C6™ + DI F ey
To conclude, we can choose
S =1+ EHK”LOO(CE), with C depending only on d,
10

such that for all 7 € [0, 79]

t
1) €8~ (pollce + 1 fIz1cey) + € f G NVE) e + 872 )lp ()| ovdr”
0

t

€ [ (I NAPE T + IVl +57 eI IVp 0l
0

+ (V@) + 87D e + 87 IV ol e ) o'
where we have noticed the following by interpolation inequality

72k (M lger 87 NVR ) L0 S8+ 87 VR ()l e
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Hence, recalling the estimates (36) for HpI\LDC(C'E)mErI(C'zﬁ) and (28) for | p[£o¢(Lo). noticing
also that || f HLtl(Lm) < S “Z}(C&)f one arrives at for all 7 € [0, rp].

1
1ol cornipceey < €37 (Mol + f (o)l + V2 p () L)dr') +C1
0
t

=57 (Imlles + £l c0) + € [ i) lp@)llma+ €.
0
(39)

with (recall that ||« (1")|| e ~ §7°)

Ki(") =872 457 e (¢ ]| e

i

J :=f(a—f||vzp(r’>||m + (V&) ge +37 TV |20
0

+ (V) + 6 et + 67 IV ol )dr'. (30)

Next we decompose J into four parts Jy ... Js and we bound them one by one by
interpolation-type inequalities (see e.g. (42) for Jj (41) below). Denote

f
= [ 5 IV2p () | edr’. 41)
0

Then for any jp € N, we can control J; as follows:

Tt

n<c j 57 S 2 A p ()| edt”

0 J
t t
<C f 57N 2N Ajp(r) || oodt’ + € f 57y 2N A p() || oedt!
0 J=Jo 0 J=Jo

Tt

< C_/5*€2j°(2*€) sup 27| A (1) Lodi’
. J<Jo
t
+ Cft?*6 > 2nUmioeam e I A o (1) | Loodt”
0 j>j0
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t
<€ [ 5720 sup 2/ Ao (1)l
7
0

i
4C f §—¢ Z 2_q52_j06+(q+j0)(2+6)||Aq+j0p(2")||Locdt’.
0 qg=>0

The second term on the righthand side can be bounded as

i

CZZ_QE [5—62—j0€+(q+j0)(2+5)IlAq+j0p(f’)‘|Locdt’
g=0 0

t
< CZ2_"€ sup[5_62_’-°€+ql(2+€)”AQ’P(F’)HLOGdI!
g=0 a 0

t

< C. sup[ 5762*,?;062(;’(2+€)HAq,p(t/) ||Lmdrl,

79

for a suitable constant Ce. For any 7 > 0 small, let us choose jp large enough (namely,
Ce 872770 ~ p) such that

t

12 Cpe [ 520 et + 0l gy ey (2)
0

Along the lines of the proof of the interpolation-type inequality (42) for J;, we have the bounds
for J2, J3

t
I = f (k) | erae + 87NV p (") godr’
0
t
<c f (e @llerse +87 = lp () llee + nllolzrease,
0
Tt
J3 :=f(\|VK(r’)|IL°c + 87l r14edr’
0

t
< cf(nwa’)um +57 Do)l ee + ullplizyeasey.
0
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Finally, we leave J4 unchanged,

t

syi= [ 57T I @l
0

Therefore, to sum up, choosing 7 sufficiently small, denoting

2
Ka(t'y =82 4 |l ()| 7 (43)

Cl+e?

and noticing that (by the choice of § and interpolation inequalities, e.g. [lx(1)][¢e <

1 £ -
lse (/) 255 Mlse (M) 55
Kx(t) 2 CN 2+ V() 3 + 8 VR () [110),

for all 7 € [0, 7p], the estimate (39) for p becomes

PNz it icze = €87 (Ieolles + £l
t
+C [ (KOs + Ko@) ar' @
0

Notice that recalling the definition of K (40) and K> (43), the above estimate (44) with t =19
entails immediately the conclusion (27) when s =€ € (0, 1), r = 00, since 7y can be chosen
arbitrarily.

4.1.3. Step 3: general case B, ,

Now we want to deal with the general case BY, ,. Let us apply Ej, =Aj 1 +A;+ A,
J =0, to System (26), yielding

{atﬁj—div(fcv,aj)zfj—ﬁj, 45)
Pjli=0="po,;-
with

pi=Njp. Fi=A;f Rj=div(lx,.A;]Vp). Poj=A;p0.

We apply the a priori estimate (44) to the solution pj of System (45) for some € € (0, 1). entailing
for all r € [0, rp],

151732 contieorer < €87 (I1Bojlle + 17 = Rillzyce) )

-

+¢ [ (Killpsli + Kallps e ) o 6)
0

withd =1+ E||K||L%o((-_-5) and K, K> defined in (40) and (43) respectively.
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Let us notice that for j = 0, denoting by p; = A;p and p, = A, p as usual, we have
Ajpij=p; and A,p; =0if g — j| = 4.

Hence, due to the dyadic characterization of Holder spaces, the above inequality (46) gives

t
A .
25 o oo ooy + 272 f ;| et
0

1
505‘6(2"5 > (loglis+ f |f21||L'°°dT,)+|]_‘3j||i}(Cf))
0

li—ql<3

t

+¢ 3 [(Killpglis +27 Kallpg e )ar' (47)
li—al=3 7

Let us consider ||§J,- ||E‘(C€) for a while: we decompose the commutator I_QJ- into the following
. ~
five members (withk =« — A_jx):

div ([Tz, A;1Vp) + div (Ti g, &) — div Aj(Ty,R) — div A (R(E, Vp)) +div ([A_1x, A;1Vp)
J
= ﬁj + R% + Ej + Ej’ + E: with TL:U =Tuv+ R(u,v).

It is easy to see that the members I_?} E; E‘}, ﬁi are spectrally supported in the ball of size 2/
and hence

7
ol B3 o4 B5 j ol B3 p4 B>
|\(R}.RJ.R‘},RJ)||E;(Ce_)SZKf||(R}.Rj.R‘},Rj)|\Loodr’.
0

By use also of classical commutator estimates Proposition 3.4 on the righthand side one derives
(for some suitable sequence (c j)j el

T
IR}, RY, RE, RD g1 ey 277 e, f (||VKHBgC‘, Vol + HVK||Loo||VpHBgO,)dr’. (48)
0

As for I_?f, we control its Zt] (C€)-norm by

i

sup 2j,’€[‘|di\f (Aju Z (Aj:ESjur]Eij)) H dr’
J"<i'+3 P Lo

t

< sup 2D N AR ]| AV pedr’

J'<i'+3 0 J’>ji-3



5098 F. Fanelli, X. Liao / J. Differential Equations 259 (2015) 5074-5114

t
i(e+1 —J (s+1
Sy 7 a7 O e Velg, IV plloedr!
0 J=zi-3

t
521’.(675‘) Z 2(].!7].)(675)('}’[”VKHBSC_,.”VPHLDCdH-
0

J'=j=3

Therefore we choose € < s to obtain
t
IR ey S27€e; ] IViclipy, IVl Ledr” (49)
0

Finally, by view of the above estimates (48) and (49) for Ej term, one gets from a priori
estimate (47) the following bound for p;:

I
||pj|\L,oo(Loa)+22fjHp,-nLoo
0

1
ses [ X (iooallem+ [ 150e)
0

lj—q|<3
13
+270; f (1Vicllsg,, VPl + [ Vel [V plgg,, )dr
0
t

+C 3[R+ Kooyl )ar
al=3y

Therefore, we multiply both sides by 248, J = —1 and then take €" norm, and we arrive at the
following: for all 7 € [0, 1p] (noticing the L®-estimate (28))

t

HP”Z?)(B;C r)ﬂf}(Bi;c*_%) = Cf(Kl + KZ)”p”B&;_rdI’
0

+C5 (upmg;, /1718,

1

+ [ (19l 190l + ||vf<||3;w||w|pc)dr').
0

Recalling the definitions (40), (43) of Ky, K> and 6 7€ ~ | + HKHL?OO(Ce), by Young’s inequality
we infer that
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[ ki + Kllag a <cf(6**+||f<(r)Hg;)up||3gwdr’,

and hence, for all 7 € [0, rp], there holds

el €
PN 7o s, )T B2y = €+ HKHL(OO((; (IPOllBgQ,, aall A AT T

t

(0 BT g, + 1961l
0

+ Vg, |Vp||mo)dr’).

By choosing 7 = 7y above we finished the proof of Proposition 4.1, since 7y € R" can be chosen
arbitrarily.

4.2. Transport equations in Bgo .

We state and prove here refined a priori estimates for transport equations

{afwﬂlvw:g’ (50)

®|i—p = wo,

in the endpoint Besov space BO 1
First of all, let us recall the c]asswal result in the setting of B , classes (see e.g. [3], Chap-
ter 3).

Prop051t10n 43. Let | <r <o and s =0 (s > —1 if dive =0). Let wy € Boor, g <€
LY(0.T]; B, ;) and v be a time-dependent vector field in Cp([0, T'] x RYY such that

Vv e LY[0,T]; L>®) ifs <],
Vo e LY0, T B if s> 1, ors=r=1.
Then Equation (50) has a unique solution w in:

e the space C([0, T, Bgoﬁ,,) if r <oo,
o the space (ms,q(:([o, T1; Bg;’w)) NCu ([0, T1; BS o) if r = 00

Moreover, for all t € [0, T], we have

t

eV Olwmllps,, < leolip, +f€7cv(r)||g(ff)||330_, dr’ (5
0
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V@)l if s <1,
with V/(t) := . Lors=r=1.
IVl gy if 5 > 1
If w =v then, for all s =0 (s > —1 if divv = 0), Estimate (51) holds with V'(t) :=
Ve (1) L.

Then, the Besov norm of the solution grows in an exponential way with respect to the norm of
the transport field v. Nevertheless, if v is divergence-free then the Bgo, - norm of w grows linearly
in v: this was proved first by Vishik in [28], and then by Hmidi and Keraani in [21]. Here we
generalize their result to the case when v is not divergence free. Of course, we will get a growth
also on div v, which is still suitable for our scopes (see Subsection 5.2).

Proposition 4.4. Let us consider the linear transport equation (50).
For any g = 0, there exists a constant C, depending only on d and B, such that the following
a priori estimate holds true:

lo®lge = C(lwollge  + lglla ) (14+V0),

with V (t) defined by

t

V(t) Z=[(HVU”L00 + \|divv||B£0m)dI’.
0

Proof. We will follow the proof of [21]. Firstly we can write the solution @ of the transport
equation (50) as a sum: w = Zszl wg, with oy, satisfying

drwp +v - Vo = Akg, (52)
wilr=0 = Agwy.
We obviously have from above that
1
ol < Nacoolis + [ 18cglun ' 53)
0
By classical transport estimates in Proposition 4.3, for any € € (0, 1), we have
loxl,, < (1akoolse,, + I18kgl e ) exp(CIVOIL @) ) (54)

Lo . —e
In order to get a priori estimates in Besov space B .

Equation (52) to get

after applying the operator A; to

{Br(AjCUk)‘f'U'V(Ajwk)=AjAk8+[U,Aj]'Vka- (55)

(Ajwr)]i=0 = AjAgwo.
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We write the commutator [v, A;] - Vay as follows (recalling Bony's decomposition (20) and
denoting v:=v — A_jv):

[v, Aj1- Vay =[Ts, Aj]- Var +Ta;ve, U+ R(A Vg, T) — Aj(Tve, D)
— Ajdiv (R(ey, v)) + AR (wg, divo) +[A_ v, Al Vay.

Then, for all 8 > €, by use of Proposition 3.4 and Proposition 3.5, the L°-norm of all the above
terms can be bounded by (for some nonnegative sequence ” (cj); Hfl =1):

Cd, )27 ¢; V Dllexllp< . with V' (1) = [Vvll + [ldivelgs .

Thus, we apply the a priori estimate (53) to the equation (55), multiply both sides by 27/¢ and
take £"-norm on j, and finally by Gronwall’s lemma we have the following a priori estimate in
the space B

lor®ll s, = (I1Ake0llpe, + I18xgl e, ) exp(CV)). (56)

On the other side. one has the following, for some positive integer N to be determined here-
after:

loligo < D7 Ndjexlle= D NAjorl= + 37 1A ol

jk=—1 [/ —k[<N lJ—k|=N

Estimate (53) implies

> 1ajeliee <N Y (Iakwollis + 18kgl i) < N(lleollgo | + el ):
|j—k|<N k ' '

while Estimates (54) and (56) entail the following (for some nonnegative sequence (c;) € hy:

18 el =275 (I arenllze + 18kgl ) ) exp(CVO)),

which issues immediately

> Iajerlzs =27¥ (ool + el ) exp(CVn),
lJ—k|=N ' '

Therefore, for any g > 0, we can choose € € (0, 1) and N € Nsuch thate < 8 and Nelog2 ~
1 4+ CV(¢). Thus the lemma follows from the above estimates. O

5. Proof of the main results
We are now ready to tackle the proof of our main results, for which this section is devoted to.

We will first focus on the proof of Theorem 2.1 and in the second part, instead, we will deal with
Theorem 2.4.
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5.1. Proof of the local in time well-posedness result

In this subsection we will prove Theorem 2.1. We will follow the standard procedure: in Step |
we construct a sequence of approximate solutions satisfying uniform bounds, and in Step 2 we
prove the convergence of this sequence.

For the sake of conciseness, we will present the proof just for r = |, for which we can use
classical time-dependent spaces LqT(B;O’] ). The general case is just more technical, but it does
not involve any novelty: it can be treated as in [ 18], by use of refined commutator and product
estimates in Chemin—Lerner spaces.

The interpolation inequalities (17) and (18), the product estimates in Proposition 3.5 and the
estimates for the composition of functions in Proposition 3.8 will be used thoroughly in the proof.
In particular, noticing p € [ps«, p*]. we have the following product estimates for s > 0

|(a0) =16y = L) =x(D)| | =Cllellgy,. luvllay, < Clulpg Ivlp, . 7

00,1

and for s = 1 and for two smooth functions f, g defined on R, one has

IV2£(p) ® (Ve(p), wllg:, , < CIVZ ()< l(Velp),w)lps, |

00,1 —
+CIVZF (), 1(V2(0) )10
< Cllllgs+1 (Ve wllps, , + Clite.wllgy, , ol g2
< Cll(e. wligs, llell gss2. (58)

IV2f(0) ® (Vg(p). w2 < V3£ ()l (Ve (o) w)ll 2 < Cllell gst1 (Vo w20 (59)
[ldiv (v - Vu)HB;;% < C||Vv||B;;= Hvuugm if divo =0. (60)

Let us make some simplifications in the coming proof. We always suppose the existence time
T* <1 and that all the constants appearing in the sequel, such as C, Cy, CEg, are bigger than 1.
We always denote f" = f(p") and §f" = f(p") — f(p"~) for functions f = f(p).

5.1.1. Step I: construction of a sequence of approximate solutions
As usual, after fixing (0°, u?, Vz®) = (0o, uo, 0). we consider inductively the n-th approxi-
mate solution (9", u", ™) to be the unique global solution of the following linear system:

30" +u" 1. Vo' —div (k" V") =0,
D 4 (w1 — g (p”)_] Vp™") - Vu" + "V = =l
diva" =0,
(Qn7 Hn)|T:0 = (QO! ‘,’to)v

(61)

where b1 =b(p”_l), P =K(p"_l),)\”_] =k(p”_l) and

- :(pnfl)fl(Abnflvanfl R Ve S I X _VZanfl)’

anfl :a(p"fl), (62)
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It is easy to see that by testing (61); by p"u", one should have the energy identity for «"

I d ny, n2 npn—I n
37 pllu | = p"h -u”. (63)

R4 Rd

In this paragraph, one denotes

M :=|[(eo, uo)lms, >  Eo:=llooll 2 + [[uoll 2.

We aim at proving that there exist a sufficiently small parameter t (to be determined later), a pos-
itive time 7* (which may depend on 7), a positive constant Cps (which may depend on M) and

a positive constant Cg such that the uniform estimates for the solution sequence (p", u", V')
hold:

pe=pti=Llte" e g, p=Cue "2 grhynrt, 22 <7 (64)

n ) n n af2
[t ”L%(B_;_‘)Q” <Cum, |lu HL%"*(B;Q_I)HL;"*(B;C-J)ST’ Vx ‘IL;_*(B;O-IHLZJ =t (65)

le" Lo 2y +1Ve HL%”*(sz el 12y = Ce Eo, (66)

with « defined later.

Firstly, by choosing small 7%, Estimates (64), (65) and (66) all hold true for n = 0. Next we
suppose the (n — 1)-th element (0", "=, V"~1) to belong to Space E, defined as the set of
the triplet (¢, u, V) belonging to

00,1

(c@*:B, nrhnLd ahnLl BLD)
+ s 2 d 1 s 1 2 d
x (C®*: B NLY) " x (Lige (Bl ) N Lige (L) (67)
such that the inductive assumptions (64). (65) and (66) are satisfied. We then just have to show

that the same holds true for the n-th unknown (¢”, u", V™) defined by System (61).
According to Proposition 4.1 and Remark 4.2, ¢" belongs to C(R™; B N L} (ng%).

loc

On the other hand. since u"~! € L (L*), energy inequality (11) for ¢" follows and o" €
C(R*; L) N LE (H'), such that

lo" 2y + V" 1222, < Clcoll 2. (68)

As in [18], we introduce gy to be the solution of the free heat equation with initial datum g,
which satisfies

lecliz s, ) + leelpy g2y = Crlleollsy, . YT >0, Crdependingon T,  (69)

ller ”L%,*(B;;{)HL‘T*(Bgﬁ) <72 for small enough T*. (70)

Correspondingly, the remainder 9" := " — g, verifies the following system:
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{ 80" +u"" V" —div (k""" = —u"~' Vo +div (k" = 1)Vor), 1)

0" li=0=0.
Proposition 4.1 and Remark 4.2 thus imply that
_ —1 Cn—l Kn—l(
10" 0 e s, pziasst) = (C" (e ')) LW erm,
where C" (1) depends on o™ ||L;?C(Bgo)])! and
n—1 . n—1y2
K" (t):=1t+||Vk HL?(BSO‘IJ'
f= =" Ve — " Vo +div(k" = 1) Vo).
Inductive assumptions, the product estimates (57) and the estimate (70) entail hence
C”’l(r)ecnfl(‘)ﬂflm <Cg, Vte[0,T*], Ckx depending only on M,

n n—1 Al
£y, s, = Cla" gz, s, IV L2 s,

o0,

+CCyT? <CT Ve g2, s, +CCHT .

Therefore by the interpolation inequality (17) with s” = s + 1, the following smallness statement
pertaining to 9"

- . - 3
”QHHL%*(BQ{) =le"lex s, )+ HQ””LIT*(BE;;%) <72 (72)

is verified, provided we choose small  such that CCx Cpyt 2 < 1/2. Hence inductive assumption
(64) holds for ", by view of the estimates (69) and (70) for of.
We will bound «" and Vz” in the following steps.

e Energy equality (63) holds and hence there holds
t
" 700 12 < Clluoll 72 + € [ A" 2l 2t
0
We use (59) to bound ||4"~! | 2. and hence we have
t t
[ et iaar <€ [ e gy 10707l 20

0 0

Therefore by Young’s inequality one derives

t 3
2 2 —1y2 2 —1 —1y2
12 g2 < Clluoll2 + € [ 0"~ et 152"+ f 1V 2dr
00,
0 0
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Thus Gronwall’s inequality and the inductive assumptions (64) and (68) imply the estimate
(66) for (0", u™), by choosing T* sufficiently small.

We apply the standard estimates for transport equation in Proposition 4.3 to the equation
(61) for u™ and then the inductive assumptions and the product estimates (57) and (58) (on
A" ”L}(Bic 1)) ensure that

e e css, ) < CCpetcme (H”OHB-};J + T+ I\VN”HL}(B;C.I)) <CCy(1+1"), (73)
where we have defined
n" = |va" HL;*(BSQJ)'
Consider the elliptic equation satisfied by 7":
div A"V = div (h”*‘ S N AP Vu").
Inductive assumptions, energy estimates (66) and product estimates (59) on 2"~ ! imply

197"y, iy < C |07 = @ = ") V") - Y

Ll
<Clle" M2, g IOVO" o u" D2, 12,

nL A PER Y [l 0 PEWTES
= CCeEo(t + |l B, )

<CCpCyEor(1+11M), if (T5)12 < 1. (74)

Now, recalling the interpolation inequality (17) with s’ =s — % entails (with some appropri-
ated Cpand 0 <o < 1)

IVZ®ll 1, o1y = CIVATIG Iva"l 7 = Cn(l+ 0%

Ly (BL L. (L% Ly (B, )

Let’s consider the following equation
Ax" = Vlog p" - V" + p"div (h"*‘ — W = (eI - Vu”).
Notice by Proposition 3.5 one has (noticing s — % >0)

n n < n ) n
V108" - V17l,y ity SIVI0B A"l i IV, ooy

Thanks to product estimates (57), (58) and (60), for some (new) Cry,

||AJT"\|L;*(B;{) < CCMHVTF"HLIT*(B;V% +CCyt(1+T1") < Cp(1 + 0" (75)
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e By decomposing V" into low frequency part and high frequency part (and using Bernstein’s
inequality Lemma 3.2), one has

n n n n n
nm" S IVaim ”L;*(LZJ'F”AW ||L;*(B;;11)§\|VJT ”L;*(Ll)'i'”A” HLIT*(B;;‘I)-

Thus, the above two estimates (74) and (75) imply, for 7 and 7* small enough, the inductive
assumption (65) for 7". Furthermore, (73) entails the inductive assumption (65) for u".

5.1.2. Step 2: convergence of the approximate solufions’ sequence
We turn now to establish that the above sequence converges to a “true” solution of system (6).
Let us introduce the difference sequence

(80", u", Vén") = (0" — Q”_], W —u"l Vgt — Vﬂ'”_]). n=>1.
When n > 2, it verifies the following system:

380" +u""1 . Vso" —div (k" 'Vspe") = F" 1,
0r8u™ + (u"_l — el Viog p") - Véu" + A"Vin" = H(Z'_l,
divéu™ =0,

(80", du")|i—0 = (0,0),

(76)

where we have set

Fr=t = —su"=" . V"™ 4 div (3" Ve T,
H' ™ =5k — (su" ! — 5k W log p" — k" 2Vs(log p)") - V! — 53"V

with A"t = pn =t — pn 2,
We will consider the difference sequence in the energy space. Let’s do some analysis first: one
needs Hf‘l in L}*(Lz) and hence

(" H7 Ask" Vet and  (p" TV VE2sa" i LEL (L.

We only have Vo™ in LT (L), and thus we need V250" in L}* (L?): this property follows from
the energy inequality of the equation of V§p”

V8" +u V250" — div (k" 'V250™)
=—Vso" - Vu" ! +div(Vsp" @ V" 1)y + VF" L. (77)

In the above, the first two terms of the right-hand side are of lower order, while the third one is
in [.]2Oc (H~Y), thus taking L? inner product works.

Now we begin to make the above analysis in detail.

Since 50" € E (recall (67) for its definition), the energy equality for Equation (76); holds for

n>2:
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1d
o= |§Qn|2d.r+[i(n_1|v5@”|2dx
Zdr/

R4 R4

= —f&u”_l V"l sp"dx —/axn—’vp"—‘ - Véo"dx
Rd R4

2 — -2 — 2
= THHSHH l”i2(Rd) + H”Vron ]Hzm(Rd)H'SQnHiZ(Rd)

+ Cellok" M 72y IVE" o ey + €1V 172520

Thus integration in time and the uniform estimates for the solutions’ sequence give (choosing &
small enough)

lée" | L2S(L?) + Vg™ HL%*(LQ)

< CU8" Mlluz @2y + 180" g2, g2) T (78)

Similarly, energy equality holds for V8o”, n > 2 (in fact. it’s not clear that 80! € L2 (H?)):

loc

1d
R4 R4

- —[(VSQ" V" VS 4+ Vst - Vise" - Vi 4+ F"_1A5Qn)dx-

R4

Integrating in time and the inductive assumptions also imply

2
IV8e" Il w2y + V78" 12, 12

< Crll@e" " au" Nl 12 + CCMlIVIR" M 2, 2.
By controlling || V80" ! ”L%*(LZ) above by (78), one sums up these two inequalities, obtaining

HfsQ"”L;C*(Hl) + ||V‘SQ”HL2T*(H')

<CCyt| ™", 80" 2, su"", 5u"*2)||L;c*(Lg). (79)

Now we turn to §u”. We rewrite 84"~ as

n—1

(ABb”flVanfl + AL Vs 4 sun . V2]
P

+ur =2 Va4 Vbt vRar ! 4 V2 V2an )

+ ((pn—])—l _ (pn—Z)—])(Abn—2 Va2 w2 V2 4 2 2D,
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From the inductive estimates we also have that
-1 —1 —1
H‘Shn ”L;,*(LZ) =< CCMT(”'SQH HLZT*(HE) + HSH” ”L?f;(l,?))
—1
+ CCrEyTlde™ Ml 12):

and

1HZ g1, 12y < C(Cor + CEEQTI8" 2, 2y + 186" 1, 12)

2
+Ct?||5¢" e 22y

By view of the density equation for p” and divéu” =0, one has
—1
8l 02y = CIHE g, io)- (30)

Combining Estimate (79) and (80) entails, for sufficiently small ¢ (depending only on d. Cyy,
Cg. Ep).

180" | s, erynez, a2y + 100" 1%, 12)
1

< \|(ag"*‘,ag”*z,ag”*.5u"*‘,azc”*z,alf”*3)||L;i(Lz).

™|

Thus > |[(60", 51£”)||L720*(L2) converges. Since 80" € C(R*; L?), the Cauchy sequences {¢"} and

{u™} converge respectively to ¢ and u in C ([0, T*]; L?). It is also easy to see that

—1
D180 s a2 IR Iz DO NHE I, g2y < oo,

n=2 n=2 n>2
Rewrite the elliptic equation for ="
div(A"Vr™) =div H' ! — div ("' — "7 Viog p") - Vou™),
=div Hffl — div (&l" V@ -] Vlog p") + su"div (K”quog p”)),
We hence get
V8"l 12y < CAH Ly 2y + Conllu”ll s 12)-

Thus > 57 || V" ”L}* (L2) also converges and hence V" converges to the unique limit Vzr in
Li.(L?).

Finally, one easily checks that the limit (p, u, V) solves System (6) and is in E(T*) by Fatou
property. The proof of the uniqueness and the stability is quite similar and we omit it.
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5.2. Lower bounds for the lifespan in dimension d =2

In this section, we aim to get a lower bound for the lifespan of the solution in the case of
dimension ¢ = 2. The idea is to resort to the vorticity in order to control the high frequencies of
the velocity field, as done in [15] in the context of incompressible Euler equations with variable
density. The key to the proof will be bounding, by use of Proposition 4.4, the BD .1 horm of the

vorticity linearly (but not exponentially) with respect to the velocity field. Let us just mention
that in the proof we always keep in mind that [[op — 1|l g1 = | should be small and we will pay

attention to the explicit dependence on it.
Let us define the (scalar) vorticity o of the fluid as in the classical case:

w = Bluz — Bgul = 31112 — Bgvl. (81)
According to (1), it satisfies the following transport equation:
dw +v-Vo+ oAb+ ViAAVII =0, (82)
where (recalling the change of variables (4) and (5))

v=u+Vb, a=ua(p), b=>b(p), »=r(p),
VII=Vr +Via, VAIAVII = d1AdI1 — 322 011.

Similarly as in [18], let us introduce the following notations:

x’?0=|\90||,ggo1 =1, UD=HHOHB;C|,

R(1)= ”Q”L?Q(B.;cﬂ' S(1) = ”Q”L}(B;,l)' Ur) = ”””L?C(BéoJ)'

First of all, we apply Proposition 4.1 to the density equation (6);: it is easy to see that we get,
for some € € (0. 1) (denoting §'(r) = |lo(2)]| g3 1 and noticing the product estimate (57) and the

interpolation inequality (17)),

Tt
R+S<C(1+RW)(RO+I(UR‘/2(S’)”2 +(1+ R (5T )R+R‘/~(S)‘/2)dr)

(83)

Hence by use of Young’s inequality and choosing € = 1/2. the above estimate (83) becomes
R+S<CU+RYRy+C(1 + R'ﬁ)f (UzR YR+ R3) de’.

It we define now
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t
Tg = Sup{f ~0|R=<2, fR3dt’ < 2R0}, (84)
0

then by Gronwall inequality, for all 7 € [0, Tg] we infer the estimate

t
R+SSCRoexp(Cf(] +U2)dt’). (85)
0

We now estimate the velocity field. Similar as in (57)—(60), let us summarize the following
inequalities for the non-linear terms in the momentum equation, which will be frequently used
in the sequel:

IV2b(o) gy <Mkl <llellg =5 (86)
1AbYall 2 S bl Vall2 S llellg 1902

SRYVHSH Vol = RIVAIL + S (87)
I +Vb) - Vull 2 S IVl o (1Vpll 2 + lull2) S UV pll 2 + llull2). (88)

Similarly as the above Inequality (87), one has also
IVb-V2all 2 SRIVelT + 8, llu-Viala S Rllullj, + S (89)

Now, by separating low and high frequencies, we find the following bound for the velocity:

U = (lullz + Nl )- 90)

From the energy inequality for Equation (12) of u, i.e.

t
lu)llzz < € | luoll2 + f Idiv (v ® Va) |2’ | |
0

due to Inequalities (87) and (89), it follows that

t

a2 = € | lluollz2 + f(R(||Vm|’~;2+uu||iz) +s’)dr’ : 1)
0

Now, applying Proposition 4.4 with 8 = | to Equation (82), we find
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1
/
lo®lp < [l + fHVAAVl'I+mAbHBEOIdI
J .

f

x 1+f(nvuum+||v2b\|3;m)dz’
0

By use of Bony’s paraproduct decomposition (see also [15]). one has
IVAAVTlgo S IVelge IVl and lw Abllgo S llewllgo [1ABIg: 5
hence, by virtue of the relation [|w]| zo | = U, we get
o0,

1 1
lo@llg =€ U0+f(R\IVH\IBo_1+US’)dr’ 1+[||VL1\|LaodI’+S . (92)
0 0

It remains us to deal with the pressure term. First of all, from the density equation we have
IVTlligo | < IVallg  + 13 Vallgo | S IVl +US +5.
We next bound s, which satisfies the following elliptic equation:
div(AVr) =div(h —v-Vu) =div(h —u - Vv + udivo).

Similarly as the end of Step 1, Subsection 5.1, decomposing Vr into the high and low frequency
parts yields to

1V llg  SIVA il + ATl g |

SNVl + 137 [=VA- Va +div(h—v- Vol go

1
2
0o, 1

Sl —v-Vull2 + Vel V7 IIB

+ 1Vl MlAllgr  +ldiv (- Vil ).

By the intfrpolation inequality (18) with 5" = % and Young's inequality, one derives that, for
some 6 > 1.

IValy < C((l + ROIh =+ Vb) - Va2 + (1 + R (Il g+ ||div(u-Vu)\|BgC1)).

Then, by the product estimates in (86)—(89), one finally bounds Vrr as follows:
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IVallp = CA+RY(RAVAIL + i) + UV ol 2+l 12)
+(1+RYWUS +5 +U2).
Let us define
X(0) = U+ lu®ll2 = Nu)ll g -

So we get
IVl [Vl =€ (14 R2) (IVpI3, + 5 + X7 + X57).

Therefore, Estimate (92) for the vorticity becomes (noticing there is a “coefficient” R before
IVITlgs )

t
lo®lg < (xo + [(1 + 1'e5+3)(1e|v,o||i2 +RS +RX?+ Xs’)df’)
0

t

X 1+S+fXdr’
0

with X (0) = X¢. Keeping in mind (85), from relation (90) we finally find, for all r € [0, Tg],

t

t
X(1) < C(X0+ ROeCf[;(sz)(f IVpll7,de" + 1) + eC-fS(‘+X2)fXS’dr’)
0 0

t

X l+S+fXdr’
0

Let us define now Ty as the quantity

t
Ty :=sup r>0|R0eCf6“+X2> <2, ecfo'(HXZ)/XS’dt’g 2%, ) (93)
0

then notice that, in [0, Tx], one has in particular (noticing that S < CRoeC Jo1+X%) < 2C by (85)
and [Vl 2.2, < Clleoll2)

t

X(0) £ €O+ ool +Xo) (14 [ Xar' | ¥i €10, 7l 0 [0, 7).
0
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Therefore, defining I'p := (1 + HQDH?:2 + Xp). then by Gronwall’s lemma we get

X(t) < CToe™  and  R(1) + S(t) < C Ro exp (crg € FO") on [0, TR] N [0, Tx].
(94)

where we used also relation (85).

Now, by a standard bootstrap argument, we insert the previous estimates (94) on (R, S, X)(z)
into the conditions in (84) and (93) defining the times Tk and Ty respectively: after a quite
straightforward calculation (which we omit here), one can check that, for ¢ > 0 small enough,
these conditions are fulfilled on [0, 7] with T > 0 given by relation (16).

This completes the proof of Theorem 2.4.
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