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Abstract Restricted Boltzmann machines are key tools in machine learning and are
described by the energy function of bipartite spin-glasses. From a statistical mechanical
perspective, they share the same Gibbs measure of Hopfield networks for associative mem-
ory. In this equivalence, weights in the former play as patterns in the latter. As Boltzmann
machines usually require real weights to be trainedwith gradient-descent-likemethods, while
Hopfield networks typically store binary patterns to be able to retrieve, the investigation of a
mixed Hebbian network, equipped with both real (e.g., Gaussian) and discrete (e.g., Boolean)
patterns naturally arises. We prove that, in the challenging regime of a high storage of real
patterns, where retrieval is forbidden, an additional load of Boolean patterns can still be
retrieved, as long as the ratio between the overall load and the network size does not exceed a
critical threshold, that turns out to be the same of the standard Amit–Gutfreund–Sompolinsky
theory. Assuming replica symmetry, we study the case of a low load of Boolean patterns com-
bining the stochastic stability and Hamilton-Jacobi interpolating techniques. The result can
be extended to the high load by a non rigorous but standard replica computation argument.

Keywords Neural networks · Hopfield model · Boltzmann machine

1 Introduction

In recent years we have witnessed a formidably fast development of research in Artifi-
cial Intelligence. Neural networks are playing an important role in this trend, mainly due
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to the ability of the so-called deep networks to solve difficult problems, after a proper
training. Such problems are broadly ranged in sciences (from Particle Physics [9] to Com-
putational Biology [46]), not to mention the applied world of technology, where their
usage has become pervasive. Nevertheless, as admitted in [45], despite its remarkable suc-
cesses, nobody yet understands exhaustively how the whole scaffold works, while there is
wide agreement that achieving a full understanding of Deep Learning is an urgent prior-
ity.

The pivotal constituent of Deep Learning is the Restricted Boltzmann Machine (RBM)
[37,39,44,49]. This is a network of units with a bipartite structure, the two parties being
referred to as visible layer and hidden layer; units belonging to different layers are connected
by links endowed with weights while nodes belonging to the same layer are not connected
(see Fig. 1, left panel). In the jargon of statistical physicists, RBMs have the same energy of a
bipartite spin-glass [8,15,21–23]. By marginalization over the hidden layer, RBMs have also
been shown to share the same phase diagram of an Hopfield network [1,17,47,53,56], whose
neurons, corresponding to the units of the visible layer (see Fig. 1 right panel), are connected
each other via Hebbian couplings [38] and the number of stored patterns corresponds to
the amount of hidden units. The Hopfield network is able to spontaneously retrieve such
patterns, and therefore to work as an associative memory [5,44], as long as the ratio between
the patterns to handle and the available neurons is not too large [6], or, in the dual perspective
of the RBMs, as long as the size of the hidden layer is not too large compared to the size of
the visible layer.

Crucially, the weight vectors learnt by the RBM after training play as patterns in Hopfield
retrieval. Since RBMs typically work with real weight vectors, while standard Hopfield
networks are built with Boolean patterns, studies on possible generalizations are in order and
they are beginning to appear in the literature [11,56].
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Fig. 1 Left: example of a RBM equipped with 6 visible neurons σi , i ∈ (1, ..., 6) and 3 hidden units zμ, μ ∈
(1, ..., 3). The weights connecting them form the N×P matrix ξ

μ
i . Right: example of the correspondingAHN,

whose six visible neurons σi , i ∈ (1, . . . , 6) retrieve as patterns stored in the Hebb matrix Ji j = ∑p
μ ξ

μ
i ξ

μ
j

the three vectors ξμ, μ ∈ (1, ..., 3), each pertaining to a feature, i.e. one of the three zμ hidden variables of
the (corresponding) RBM
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In fact, in the last years, an increasing number of semi-heuristic routes toward a ratio-
nale for Deep Learning have been introduced, while rigorous answers (e.g., avoiding the
usage of the so called replica-trick [32,48,50]) to specific questions are hardly distilled (see
e.g., [14,16,24,26–28,30,51,52,54,55]).However, beyond the replica-trick, other techniques
(from cavity or message passing [41–43,47,53,58] to those based on interpolating structures
[3,15,16,23]) to handle spin-glasses have recently appeared in the literature, hence an attempt
should be made in using them to enlarge our knowledge on RBMs and generalized Hopfield
networks also from a rigorous perspective. Here we aim to contribute to this goal by adopting
interpolating techniques under the replica-symmetry assumption. The latter means that we
tacitly impose that the order parameters do not fluctuate around their means in the thermody-
namic limit [32,48]. This does not prove in any way that the replica symmetric scenario we
are going to paint is rigorously correct, but solely that, if replica symmetry holds, the behav-
ior and the properties of the system will be those inferred in this work. An alternative route
(mathematically completely different and in spirit somehow complementary to the present
one), aimed to prove the existence of regions where replica symmetry is preserved in neural
networks, has been paved by Bovier and Gayrard [26,28] and by Talagrand [54,55].

In the following, we investigate a Hopfield networks endowed with patterns that are
mixed, namely in part binary and in part real, by combining two mathematical approaches,
i.e., stochastic stability [4,14,16,20,31] and Hamilton-Jacobi interpolation [2,13,19,35,36].
In this way we are able to describe the model free-energy and its phase diagram for pure
state retrieval and we prove, at the replica symmetric level, that these mixed Hopfield net-
works are robustly capable of retrieving the digital information (i.e., the binary patterns)
although “immersed” in the continuous (slow) noise generated by the real patterns (i.e., the
sea).

More precisely, let us consider a system made of N Ising neurons dealing with a certain
number of patterns, referred to as p or k according to whether the number scales linearly with
N (i.e., p = αN ) or logarithmically with N (k = γ ln N ). These two cases correspond to the
so-called high storage and low storage regimes, respectively [7]. As well known, in the low-
storage regime the Hopfield model is able to retrieve patterns (i.e., to work as a distributed
associative memory) for binary as well as real patterns [10,11], while, in the high-storage
regime, only binary patterns can be retrieved because a linearly extensive (in N ) amount of
real patterns contains too much information for the O(N 2) synaptic couplings to perform
pattern recognition or similar tasks [10,25]. Indeed, in general, the high-storage case is much
more tricky due to its intrinsic glassiness, whence tools from disordered statistical mechanics
are in order to infer its properties [7,48]. On the contrary, standard statistical mechanical
machineries are usually effective for the low-storage case [32]. For mixed Hebbian networks
(where patterns are in part analog and in part digital) a first scenario we would figure out and
clarify is their retrieval capabilities when they are constrained to keep an extensive amount
of p real patterns (hence the worst case for retrieval) but they are also over-fed by a further
low-load of k binary patterns. Exploiting Guerra’s interpolating schemes we prove that there
exists a region in the parameter space (corresponding to not-too-high values of both fast and
slow noises), where mixed Hebbian network works as a distributed associative memory and
the boundaries of such a region are evidenced by a first-order phase transition. Further, a
fairly standard replica calculation, although not rigorous, suggests that this picture can be
extended even to the case of an extensive load for both binary and real patterns, that is,
there exists a retrieval region where pattern recognition for high-load digital information in a
real sea seems possible. Remarkably, in all these cases, the boundary for the retrieval region
turns out to be always the one identified by Amit-Gutfreund-Sompolinsky (AGS) in the 80’s
[5,6].
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1.1 Associative Hopfield Networks and Restricted Boltzmann Machines

Let us deepen the ideas exposed so far, by introducing the standard definitions and concepts
for associative Hopfield networks (AHN) and RBMs. Following classical notations [7,32],
we shall consider N binary neurons (i.e., Ising spins [7]) and to each neuron i we assign a
dichotomic variable σi that describes its activity: if σi = +1 the i-th neuron is spiking, while
if σi = −1 it is quiescent.

Neurons are embedded in a fully connected network, in such a way that mean-field
approaches are suitable for the investigation. The synaptic potential hi that the i-th neu-
ron receives from the other N − 1 is defined as

hi =
N∑

j �=i

Ji jσ j ,

where Ji j = J ji is the synaptic coupling between neuron j and neuron i , defined according
to Hebb’s learning rule [38] as

Ji j = 1

N

p∑

μ=1

ξ
μ
i ξ

μ
j . (1)

Indeed, associative memory models are built to recognize a certain group of words, pixels,
or, generically, patterns: a pattern ξ is defined as a sequence of random variables ξ =
(ξ1, . . . , ξN ). If we want the network to memorize and retrieve a number p of patterns, we
have to introduce another index to distinguish them: {ξ1, . . . , ξ p}, and we shall assume that
the set

{
ξ

μ
i

}
i,μ is made of p × N i.i.d. variables. Notice that, for a Shannon information

compression argument, if the network is able to cope with this kind of patterns, then it
certainly retains at least the same capacity in the case of correlated patterns [2,33]. Boolean
binary patterns have entries such that P(ξi = +1) = P(ξi = −1) = 1/2, while Gaussian
real patterns have entries drawn from P(ξi ) ∼ N (0, 1).

TheHamiltonian HAHN
N (σ, ξ) of theAHN equippedwith N Ising neurons σ and p patterns

is defined as

HAHN
N (σ, ξ) = − 1

2N

N∑

i, j

p∑

μ=1

ξ
μ
i ξ

μ
j σiσ j . (2)

Once introduced the (fast) noise β = 1/T ∈ R
+, where T plays as a temperature in

standard statistical mechanics, the partition function Z AHN
N ,p (β) for the AHN is defined as

ZAHN
N ,p (β) =

∑

σ

exp

⎧
⎨

⎩

β

2N

p∑

μ=1

N∑

i, j

ξ
μ
i ξ

μ
j σiσ j

⎫
⎬

⎭
,

and the free energy as N−1
Eξ log ZAHN

N ,p (β). The analysis of the latter allows inferring the
model phase-diagram in the thermodynamic limit (N → ∞) [7,32]. Note that in the previous
definitions we have introduced for simplicity also self-interactions, but we will see that their
presence does not affect the thermodynamic state of the network because they contribute at
most to a simple constant term in the free energy.

The Hamiltonian HRBM
N (σ, ξ) of the RBM, equipped with a visible layer of N binary

(i.e. Boolean) units σi , i ∈ (1, ..., N ) and a hidden layer of p real (i.e. Gaussian) units zμ,
μ ∈ (1, ..., p), connected by the N × p weight matrix ξ

μ
i , is defined as
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HRBM
N (σ, ξ) = − 1√

N

N ,p∑

i,μ

ξ
μ
i σi zμ. (3)

Again, considering β the fast noise of the network, the partition function ZRBM
N ,p (β) for the

RBM is introduced as

ZRBM
N ,p (β) =

∑

σ

∫

Rp
dM(z) exp

⎧
⎨

⎩

√
β

N

p∑

μ=1

N∑

i=1

ξ
μ
i σi zμ

⎫
⎬

⎭
,

where dM(z) = ∏p
μ=1

dzμ√
2π

ez
2
μ/2 is the p-dimensional centered Gaussian measure. The

free-energy of the model is defined as before. It is just an exercise now to show (e.g., via
standard Gaussian integration) that the partition functions of the AHN and of the RBM are
the same, i.e.

ZAHN
N ,p (β) ≡ ZRBM

N ,p (β),

and thus the same equivalence holds for the two free energies as well.
Note that, while the identity ZAHN

N (β) ≡ ZRBM
N (β) strictly holds only if we choose

Gaussian hidden units zμ, an analogous equivalence can be proved introducing a class of
generalised AHN and RBM models with any unit priors [10,11].

Remark 1 Starting from aMaster equation (see Eq. 4) for the evolution of the system, where
pt (σ ) denotes the probability of finding the network in the state σ at time t and W (σ, σ ′)
denotes the transition rate from the state σ ′ to the state σ , we notice that for symmetric
couplings, i.e. Ji j = J ji , the detailed balance (see Eq. 5) holds [7,32]. Consequently, any
(non-pathological) network dynamics converges to the Gibbs measure of the Hamiltonian H
(see Eq. 6), namely

pt+1(σ ) =
∑

σ ′
W (σ, σ ′)pt (σ ′), (4)

W (σ, σ ′)p∞(σ ′) = W (σ ′, σ )p∞(σ ), (5)

p∞(σ ) = Z−1 exp(−βH). (6)

Hence, if the Hamiltonian H displays the stored patterns as ground states (i.e., the ground
states correspond to configurations σ = ξμ, ∀μ = 1, ..., P), and if the noise affecting the
network is not too loud, any relaxation dynamics started within the basin of attraction of
any of these minima should converge to it, tacitely coding for retrieval capabilities.1 In
particular, in [17] the joint dynamics of a Boltzmann machine coupled with its dual Hopfield
representation is shown to respect the scheme above and such a dynamics holds for this mixed
network too.

More in details, in order to investigate the capabilities of these networks to retrieve patterns,
it is useful to introduce the concept ofMattis magnetization as follows: for anyμ ∈ (1, ..., p),
we define the Mattis magnetization, i.e. the overlap between the μ-th pattern and the neuron
states, as

mμ,N (σ ) = 1

N

N∑

i=1

ξ
μ
i σi , (7)

1 Actually this ideal scenario is an oversimplification due to the spontaneous formation of spurious and
metastable states in the free energy landscape, but we remind to dedicated textbooks [7,32] or articles [24,28]
as dynamical convergence to Gibbs equilibrium is not the focus of the present work.
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and, in the following, if no confusion emerges, we drop the N or σ dependencies to lighten
the notation. The magnitude of the Mattis magnetization mμ encodes whether the pattern μ

has been retrieved or not. Moreover we can rewrite the Hamiltonian (2) as a function of the
order parameters mμ’s as

HAHN
N (σ, ξ) = −N

2

p∑

μ=1

m2
μ,

hence it becomes clear that its energy minima are located at largemμ for someμ. This means
that the energy function is minimized as the spins are aligned to some of the p patterns, thus
indicating a retrieval state (i.e. the network overallworks as a distributed associativememory).

Let us now turn our attention to the RBM case. Its energy function (3) can be rewritten as
well in terms of Mattis magnetizations as

HRBM
N (σ, ξ) = −√

N
p∑

μ=1

mμzμ,

in such a way that, if the system is in the retrieval region, i.e., there is some pattern μ (say
μ∗) that is retrieved by the dual Hopfield network, then its related Mattis magnetization mμ∗
raises from zero and acts as a staggered magnetic field over its related hidden variable zμ∗ .
In the machine learning jargon, this condition corresponds to selecting a feature, among the
p possible, and allows a statistically significant classification of the data [10,37,49].

2 Mixed Hebbian Networks

In our “hybrid” Hopfield model, we consider the case in which the network has stored a low
load of Boolean patterns and a high load of Gaussian ones. We will assign the variables ξ̃ ν ,
ν = 1, . . . , k = γ ln N to the binary memories and ξμ, μ = 1, . . . , p = αN to the real ones
(with γ, α > 0). We have

{
P{ξ̃ ν

i = +1} = P{ξ̃ ν
i = −1} = 1

2 ∀i = 1, . . . , N and ν = 1, . . . , k,

P(ξ
μ
i ) ∼ N (0, 1) ∀i = 1, . . . , N and μ = 1, . . . , p.

Following the description of the standard Hopfield neural network given in Sect. 1.1, we give
the following

Definition 1 The Hamiltonian HMHN
N (σ, ξ, ξ̃ ) of the mixed Hebbian network (MHN),

equipped with N Ising neurons, a low load of k binary patterns and a high load of p real
patterns, reads as

HMHN
N (σ, ξ, ξ̃ ) = − 1

N

∑

1≤i< j≤N

⎛

⎝
k∑

ν=1

ξ̃ ν
i ξ̃ ν

j +
p∑

μ=1

ξ
μ
i ξ

μ
j

⎞

⎠ σiσ j . (8)

Notice that, splitting the above summations over (i, j), the Hamiltonian of the mixed
Hebbian network can be written as

HN (σ, ξ, ξ̃ ) = − 1

2N

N∑

i, j=1

⎛

⎝
k∑

ν=1

ξ̃ ν
i ξ̃ ν

j +
p∑

μ=1

ξ
μ
i ξ

μ
j

⎞

⎠ σiσ j + 1

2N

N∑

i=1

p∑

μ=1

(
ξ

μ
i

)2 + k

2
, (9)
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hence the last term at the r.h.s. of the previous equation does not contribute at all in the
thermodynamic limit, while the second-last term converges to

lim
N→∞

⎡

⎣ 1

2N

N∑

i=1

p∑

μ=1

(
ξ

μ
i

)2

⎤

⎦ = α

2
.

The Gibbs measure for a generic function of the neurons F(σ ) at a given level of noise β is

ωN (F) =
∑

σ F(σ )e−βHN (σ,ξ,ξ̃ )

ZN (β)
, (10)

and, once given s independent realizations (i.e., replicas) of the system, at the same level
of noise β, and quenched patterns ξ and ξ̃ , we define the s-replicated Gibbs measure as

 = ω1 × ω2 × . . . × ωs , i.e. for any function of the s neuron replicas F(σ (1), . . . , σ (s)),




(
(
σ (1), . . . , σ (s)

)
)

= 1
Zs
N

∑
σ (1) · · ·∑σ (s) F

(
σ (1), . . . , σ (s)

)
exp

{
−β

∑s
a=1 HN

(
σ (a), ξ, ξ̃

)}
.

(11)

Finally, the average over the quenched memories {ξ̃ ν
i }i,ν and {ξμ

i }i,μ for a generic function
F(ξ, ξ̃ ) is introduced as

E

[
F(ξ, ξ̃ )

]
=

∫ p∏

μ=1

N∏

i=1

dξ
μ
i√
2π

e− (ξ
μ
i )2

2 ×
k∏

ν=1

N∏

j=1

∑

{ξ̃ ν
j }

1

2
F(ξ, ξ̃ ),

and, overall, we define the average 〈·〉 = E
(·).
We continue by introducing the order parameters necessary to carry out the analysis of the

mixed model. For any pattern, we define the Mattis magnetization as before, and we further
introduce overlaps among replicas, as in [14,16], as follows: Given two replicas (a, b) of the
network, the overlap qab between visible units is defined as

qab(σ ) = 1

N

N∑

i=1

σ
(a)
i σ

(b)
i ∈ [−1, 1], (12)

and the overlap pab between hidden units as

pab(z) = 1

p

p∑

μ=1

z(a)
μ z(b)μ ∈ (−∞,+∞). (13)

Finally, we introduce the free-energy density A(α, β) of the mixed Hebbian network as

A(α, β) = lim
N→∞ AN ,k,p(β), AN ,k,p(β) = 1

N
E ln ZN ,k,p(β), (14)

where the partition function ZN ,k,p(β) reads as

ZN ,k,p(β) =
∑

σ

exp
{
−βHMHN

N (σ, ξ, ξ̃ )
}

=
∑

σ

exp

⎧
⎨

⎩

β

2N

N∑

i, j=1

k∑

ν=1

ξ̃ ν
i ξ̃ ν

j σiσ j + β

2N

N∑

i, j=1

p∑

μ=1

ξ
μ
i ξ

μ
j σiσ j

⎫
⎬

⎭
. (15)
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Therefore, the free-energy density at finite volume reads as

AN ,k,p(β) = 1
N E log ZN ,k,p(β) = 1

N E

[

−βk
2 − β

2N

∑N
i=1

∑p
μ=1(ξ

μ
i )2

]

+ 1
N E log

(
∑

σ exp

{
β
2N

∑N
i, j=1

∑k
ν=1 ξ̃ ν

i ξ̃ ν
j σiσ j + β

2N

∑N
i, j=1

∑p−1
μ=1 ξ

μ
i ξ

μ
j σiσ j

})

= −O
( ln N

N

) − αNβ
2 +

+ 1
N E ln

(
∑

σ exp

{
β
2N

∑N
i, j=1

∑k
ν=1 ξ̃ ν

i ξ̃ ν
j σiσ j + β

2N

∑N
i, j=1

∑p
μ=1 ξ

μ
i ξ

μ
j σiσ j

})

,

(16)

where the parameter αN is such that αN = p
N → α for N → ∞.

We recall that, in the statistical mechanical treatment, finding an explicit expression for
the free-energy density A(α, β) in terms of its order parameters mμ, qab, pab is the first step
for understanding the properties of the thermodynamic states of the system. This is because
the solution of A(α, β) usually comes with a variational large deviation principle over the
order parameters {mμ, qab, pab} [7,48,57] whose analysis allows inferring a phase diagram
of the system behavior.

3 Sum Rules for the Mixed Hebbian Network’s Free Energy

In this Section we explain and use the interpolating structure that we set up to obtain an
expression for the free-energy density of the MHN, at the replica symmetric level,2 as a
variational principle over the order parameters. The solution of this optimization problem
is encoded into a set of self-consistent equations that the order parameters have to satisfy,
giving the phase diagram of the model by varying the tuneable parameters.

In particular, the question we are addressing in the present work is about the existence of
a retrieval phase in such a phase diagram: we will prove that there is actually a region in the
(α, β) plane where the NHM is able to retrieve, in particular where the signal conveyed by
the binary patterns is detectable over the real noisy sea.

In a nutshell, we will adopt a combination of stochastic stability [4] and Hamilton-Jacobi
[12,13] techniques: in this section we will show all the details regarding how to proceed by
applying the former first and then the latter, while in the next section, we will briefly summa-
rize the other route (starting with Hamilton-Jacobi and concluding with stochastic stability).

As a preliminary step, it is useful to apply the Gaussian integration to the partition function
(15) to linearize the Gaussian section of the free energy density function AN ,k,p(β) with
respect to the bilinear quenched memories carried by ξ

μ
i ξ

μ
j , namely:

ZN ,k,p(β) = exp

{

−βk
2 + β

2N

∑N
i=1

∑p
μ=1(ξ

μ
i )2

}

×∑
σ exp

{
β
2N

∑N
i, j=1

∑k
ν=1 ξ̃ ν

i ξ̃ ν
j σiσ j + β

2N

∑N
i, j=1

∑p
μ=1 ξ

μ
i ξ

μ
j σiσ j

}

= exp

{

−βk
2 + β

2N

∑N
i=1

∑p
μ=1(ξ

μ
i )2

}
∑

σ exp
{

β
2N

∑N
i, j=1

∑k
ν=1 ξ̃ ν

i ξ̃ ν
j σiσ j

}

× ∫
Rp dM(z) exp

{√
β
N

∑p
μ=1

∑N
i=1 ξ

μ
i σi zμ

}

,

where dM(z) = ∏p
μ=1

dzμ√
2π

ez
2
μ/2 is the p-dimensional Gaussian measure.

2 We emphasize that the replica symmetric level of approximation is the standard one in the whole branch of
Neural Networks [7,32] and, in a nutshell, it consists in preventing the order parameters to fluctuate around
their means, i.e. they are self-averaging.
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As anticipated earlier, to achieve our goal we shall now analyse a generalized problem,
for which we give hereafter the definition in terms of its partition function: Once introduced
k + 2 scalar parameters t ∈ R

+, x ∈ R
k, ψ ∈ [0, 1], and three scalar fields A, B, C, the

generalized partition function ZN (t, x, ψ) for the MHN is defined as

ZN (t, x, ψ) = exp

{

−βk
2 − β

2N

∑N
i=1

∑p
μ=1(ξ

μ
i )2

}

×∑
σ

∫

Rp
dM(z) exp

{
t
2N

∑N
i, j=1

∑k
ν=1 ξ̃ ν

i ξ̃ ν
j σiσ j + ∑k

ν=1 xν

∑N
i=1 ξ̃ ν

i σi

}

× exp

{√
ψ

√
β
N

∑p
μ=1

∑N
i=1 ξ

μ
i σi zμ

}

× exp

{

A√
1 − ψ

∑N
i=1 ηiσi

}

× exp

{

B√
1 − ψ

∑p
μ=1 θμzμ

}

× exp

{

C 1−ψ
2

∑p
μ=1(zμ)2

}

,

(17)

with θμ, ηi ∼ N (0, 1) ∀μ = 1, . . . , p, i = 1, . . . , N .
Note that, by now, the scalar fields are given in full generality and they will be chosen

later on, in order to ensure that the replica symmetric assumption is preserved at the end of
the interpolation.

Note further that we can extend also the free energy density function to AN ,k,p(t, x, ψ),
the Gibbs measures to ωt,x,ψ and 
t,x,ψ and the overall average to 〈·〉t,x,ψ . Of course, also
these quantities recover the standard statistical mechanical scenario once evaluated at t = β,
x = 0 and ψ = 1.

We begin the study of the free energy density function through the stochastic stability.
First, exploiting the Fundamental Theorem of Calculus on AN ,k,p(t, x, ψ) in the ψ variable,
we write the following sum rule for the generalised free energy AN ,k,p(t, x, ψ) of the MHN

AN ,k,p(t, x) = AN ,k,p(t, x, ψ = 1)

= AN ,k,p(t, x, ψ = 0) +
∫ 1

0

(
dψ ′ AN ,k,p(t, x, ψ

′)
)
ψ ′=ψ

dψ. (18)

The original problem is therefore recast in the evaluation of the two terms at the r.h.s. of Eq.
(18).

To compute the first term we start through a standard Gaussian integration, hence

AN ,k,p (t, x, ψ = 0) = −O
( ln N

N

) − αNβ
2

+ 1
N E

[

log
∑

σ exp

{
t
2N

∑N
i, j=1

∑k
ν=1 ξ̃ ν

i ξ̃ ν
j σiσ j

+∑k
ν=1 xν

∑N
i=1 ξ̃ ν

i σi + A∑N
i=1 ηiσi

}

×
∫

Rp

dz1 · · · dz p
(2π)p/2

exp

{ p∑

μ=1

(

Bθμzμ + C − 1

2
z2μ

)}]

= −O
( ln N

N

) − αNβ
2 + 1

N E ln

(
1

(1−C)p/2
e

B2θ2
2(1−C)

p
)

+ 1
N E ln

∑
σ exp

{
t
2N

∑N
i, j=1

∑k
ν=1 ξ̃ ν

i ξ̃ ν
j σiσ j

+ ∑k
ν=1 xν

∑N
i=1 ξ̃ ν

i σi + A∑N
i=1 ηiσi

}

.

(19)

It is nowcrucial to notice that the term in the last line of the previousEq. (19) can be interpreted
as the free energy density ÃN ,k(t, x) of a Hopfield network with k binary patterns {ξ̃ ν} and
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N external random fields Aηi which account for the slow noise supplied by the underlying
sea of Gaussian patterns that can not be retrieved. The related generalized partition function
ZN ,k(t, x) is identified by the following expression

ZN ,k(t, x) =
∑

σ

exp

{
t N

2

k∑

ν=1

m2
ν + N

k∑

ν=1

xνmν + A
N∑

i=1

ηiσi

}

.

and we can define the Guerra Action G̃N ,k(t, x), for a unitary-mass point-particle moving in
the (1 + k) dimensional (t, x) space, as the negative free energy density ÃN (t, x):

G̃N ,k(t, x) = − ÃN ,k(t, x) = − 1

N
ln Z̃N (t, x). (20)

With this definition, the application of theHamilton-Jacobi formalism for handling ÃN ,k(t, x)
is straightforward. In fact, one can check that ÃN ,k(t, x) has the following properties

∂t ÃN ,k(t, x) = 1

2

k∑

ν=1

〈m2
ν〉x,t , ∂xν ÃN ,k(t, x) = 〈mν〉x,t , (21)

hence we can proceed according to the Hamilton-Jacobi prescription for G̃N ,k(t, x). In fact,
thanks to the Eq. (21), it is immediate to verify the next

Proposition 1 The Guerra Action obeys the following Hamilton-Jacobi PDE

∂t
(
G̃N ,k(t, x)

) + 1

2

(
∂x G̃N ,k(t, x)

)2 + VN ,k(t, x) = 0, (22)

where the potential VN ,k(t, x) is given by the sum over all the binary patterns of their related
Mattis magnetization’s variances, namely

VN ,k(t, x) = 1

2

k∑

ν

(〈m2
ν〉t,x − 〈mν〉2t,x

) = 1

2N
∂2xx G̃N ,k(t, x).

Note that, as we are in the low-storage regime for binary patterns (i.e., k ∝ ln N ), in
the thermodynamic limit the Guerra Action paints a Galilean trajectory for the point-like
particle: its evolution is simply a free motion as limN→∞ VN ,k(t, x) = 0.3 Hence, if we
define a k-dimensional vector �N (t, x), whose components are �ν

N (t, x) = ∂xν G̃N ,k(t, x),
by deriving Eq. (22) with respect to xν we obtain the following set of k Burgers equations
for the canonical momenta

∂t�
ν
N (t, x) +

k∑

τ=1

�τ
N (t, x) × ∂xτ �

ν
N (t, x) = 1

2N

k∑

τ=1

∂2xτ xτ
�ν
N (t, x) ∀ν. (23)

At present, the goal is thus to solve theBurgers equations and integrate back the solutions to
get the original problem for G̃N ,k(t, x) (and therefore for ÃN (t, x)) solved too. As standard,

3 Indeed, a standard signal-to-noise analysis applied to the slow noise built in by the not-retrieved patterns
allows us to conclude that, as long as the amount of these patterns does not scale linearly with the number of
neurons N , their interferencewith retrieval is negligible. In fact, suppose the network is in the basin of attraction
of ξ1: its equilibrium state, expected to be σ = ξ1, is stable iff ξ1i hi > 0 for all i ∈ (1, ..., N ), and it is

immediate to check that ξ1i hi = N−1 ∑
j �=i

∑
μ ξ

μ
i ξ

μ
j ξ1i ξ1j = S+ N , where the signal S = O(1), while the

noise N is a zero average random walk whose variance grows as p/N , hence, as long as limN→∞ p/N = 0,
the signal will always be prevailing.
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performing the Cole-Hopf transform �N ,k(t, x) := eN ÃN ,k (t,x), we can assert that solving
expression (23) is equal to solve the following Cauchy problem for the heat equation

{
∂t�N ,k(t, x) − 1

2N Δ�N ,k(t, x) = 0 t ∈ R, x ∈ R
k,

�N ,k(0, x) = eN ÃN ,k (0,x) x ∈ R
k .

(24)

We can now deal with the problem above through standard techniques. Namely, we write

�N ,k(t, x) =
∫

Rk
dx ′

1 · · · dx ′
kG(t, x − x ′)�N ,k(0, x

′), (25)

where G is the Green propagator G(t, x) = ( N
2π t

)k/2
e−

∑
ν x2ν N
2t .

The computations for the initial condition �N ,k(0, x) return

�N (0, x) = exp

{

N ln 2 +
N∑

i=1

E ln cosh

( k∑

ν=1

ξ̃ ν
i xν + Aη

)}

. (26)

Therefore, we can state the following

Proposition 2 Assuming standard conditions on the existence of the solution for the problem
in (24), the latter is uniquely given by the following saddle point equation:

�N ,k(t, x) =
(

N

2π t

)k/2 ∫

Rk
dx ′

1 · · · dx ′
k e

−Ng(t,x,x ′),

g(t, x, x ′) = 1

2t

k∑

ν=1

(xν − x ′
ν)

2 − ln 2 − 1

N

N∑

i=1

E ln cosh

( k∑

ν=1

ξ̃ ν
i x

′
ν + Aηi

)

. (27)

Recalling that ÃN ,k(t, x) = 1
N ln�N (t, x), in the thermodynamic limit we have that

Ã(t, x) = lim
N→+∞ ÃN ,k(t, x) = − min

x ′∈Rk
g(t, x, x ′). (28)

To get the full expression of theGuerra Action in the thermodynamic limit, wemust finally
set t = β, x = 0 and perform the minimization of the function g given in (27): with these
values for t and x , we have to fix x ′

ν = β〈mν〉 ∀ν = 1, . . . , k.
At this point Eq. (18) is almost all explicit. We still need to calculate the integral term

at the top right side of Eq. (18), for which it is sufficient to evaluate the ψ-derivative of the
free-energy density AN ,k,p(t, x, ψ) and write it in a way that allows extrapolating easily its
replica symmetric approximation.

Here we just provide the final result, while the step-by-step calculations for the ψ-
derivative are collected in Appendix A. So briefly,

d AN ,k,p(t,x,ψ)

dψ
= 1

N E

[
dψ ZN ,k,p(t,x,ψ)

ZN ,k,p(t,x,ψ)

]
= 1

2N

(
β − B2 − C)∑p

μ=1 E

(
z2μ

)

t,x

−αNβ
2 〈q12 p12〉t,x − A2

2

(
1 − 〈q12〉t,x

) + αNβ2

2 〈p12〉t,x .
(29)

Fixing the free parameters A, B and C as

A = √
αβ p̄, B = √

βq̄, C = β(1 − q̄), (30)

and adding and subtracting the term (αNβ · q̄ p̄)/2 in Eq. (29) we have
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d AN ,k,p(t, x, ψ)

dψ
= −αNβ

2
p̄(1 − q̄) − αNβ

2
〈(q12 − q̄)(p12 − p̄)〉, (31)

In the replica symmetric regime, the order parameters m, q12, p12 do not fluctuate with
respect to their quenched averages in the thermodynamic limit, i.e. using a bar to denote
their averages, 〈m〉t,x → m̄, 〈q12〉t,x → q̄12, 〈p12〉t,x → p̄12 as N → ∞. By choosing
p̄ = p̄12 and q̄ = q̄12 the last term at the r.h.s. of the above expression goes to zero in the
thermodynamic limit and the ψ-derivative can be integrated being constant over ψ . It holds
[15,21–23] that the optimal values of p̄ and q̄ can simply be obtained by computing the two
overlaps at ψ = 0 and this turns out to be equivalent to take the extremum of the trial free
energy (18) w.r.t. p̄ and q̄ as stated in the following main theorem.

Theorem 1 The replica-symmetric free-energy density of the mixed Hebbian network
defined by the Hamiltonian (9), in the thermodynamic limit, is determined by extremizing
A(m, q̄, p̄;α, β) over m, q̄, p̄, where

A(m, q̄, p̄;α, β) = −αβ
2 − α

2 ln
(
1 − β(1 − q̄)

) + αβq̄

2
(
1−β(1−q̄)

) − β
2

∑
ν m

2
ν

+ ln 2 +
〈

ln cosh

(

β
∑

ν ξ̃ νmν + √
αβ p̄η

)〉

− αβ
2 p̄(1 − q̄),

(32)

with η ∼ N (0, 1): the values of these order parameters are thus set via their following
self-consistencies

p̄ = βq̄
(
1 − β(1 − q̄)

)2 , (33)

q̄ =
〈

tanh2
(

β

k∑

ν=1

ξ̃ νmν + √
αβ p̄η

)〉

, (34)

mν =
〈

ξ̃ ν tanh

(

β

k∑

ν=1

ξ̃ νmν + √
αβ p̄η

)〉

. (35)

We highlight that for α = 0 and k = 1 we recover the Curie-Weiss free energy density
[12], while, if α > 0 and k = 0 we recover the free energy density of the analog Hopfield
model at high storage [14] and, finally, keeping k = 0, with α → ∞ (such that αβ2 = β ′,
with β ′ finite), we recover the expression of the Sherrington-Kirkpatrick free energy density
at noise level β ′ [15,16].

It is also instructive to comment on the physical meaning of the field amplitudes A ∝√
p̄,B ∝ √

q̄: these correctly reproduce, at the mean-field level, the lowest order statistics
of the internal field that each party (namely the digital one and the analog one, encoded by
σ and by z, respectively) induces on the other one.

Remark 2 In order to get insights in the critical behavior exhibited by the system, in the
expression (34), as standard when dealing with second-order phase transitions, we can
expand for small q

q � β2α

(1 − β)2
q + o(q).

This procedure returns a (second order) transition line for ergodicity breaking at

β2α

(1 − β)2
= 1 ⇔ β = 1

1 + √
α

,
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that is the same as the one for the (standard, i.e. digital) Hopfield network [5,6] as well as for
its analog counterpart [14,16]: this is not particularly surprising as here we are just checking
the pure ergodic/spin-glass transition where universality is expected to hold [29,34].

A different intuition is neededwhen looking the boundary (i.e., the transition line) splitting
the spin-glass phase from a (possible) region of retrieval. In order to find this first-order
transition line we must compare the values of the two free-energies (the one under the pure
state ansatz holding for retrieval and the other for no net magnetization accounting for the
spin-glass phase), check that there is a region in the (α, β) plane where one prevails over the
other and a complementary region where the opposite is true. The transition line is just given
by the set of points in the parameter space where the two free energy balance. Our results
return the same transition (hence the same retrieval region) of the standard (i.e. digital)
Hopfield network. Its analog counterpart does not retrieve at all hence there is no line to
compare for that case.

The whole can be restated in the following proposition

Proposition 3 The mixed Hebbian network, equipped with an extensive load of real patterns
and with a low load of binary patterns, is able to retrieve the binary patterns as long as the
system stays confined within the standard AGS-retrieval region [7,32].

In other words, bearing in mind the stochastic network dynamics as ruled by Eqs. (4−6),
starting at random within the boundaries of any basin of attraction of one of the possible
minima, if the network’s parameters do not exceed their thresholds (set up by the AGS phase
transition), the relaxation of such stochastic process will result in a retrieved pattern.

Remark 3 Note that, in the α → 0 limit (hence neglecting the real sea), the critical point
becomes βc = 1. This is perfectly consistent with the emergence of a ferromagnetic phase
(i.e., the point (β = 1, α = 0) is the Curie-Weiss or Mattis critical point).

Remark 4 Once we have fixed the parameters A, B and C (and, in particular, noting that
A = √

αβ p̄) and we have obtained an explicit expression for the MHN free-energy density
(see Eq. 32), via its self-consistency for 〈mν〉, we can appreciate how the high load of real
patterns acts as a disturbing noise against the signal carried by the Booleans. Indeed, while
Eq. 32 looks almost identical to its standard AGS-counterpart (see, e.g. [7, Eq. 6.73] or [32,
Eq. 21.78]), its physical interpretation is quite different. In the standard AGS scenario, there
are solely binary patterns and they are in a high storage. The Mattis contribution is given by
the condensed pattern (i.e. the retrieved one(s)), and all the other (whose amount is linearly
extensive in the volume of the neurons) overall introduce a quenched (slow) noise acting
against retrieval. In the present picture, instead, the binary patterns again contribute to the
Mattis retrieval, but -as they are in the low storage- do not generate any slow noise, rather,
the term against retrieval is due to the high load of analog patterns.

This remark suggests that a fairly standard usage of the replica-trick allows to extend the
previous result to the case of a high load of Boolean patterns too. Since it is not a rigorous
argument we state the following as a

Conjecture 1 Assuming a high storage of both real patterns (hence p = αN ) as well as
binary patterns (hence k = γ N ), Theorem 1 still holds as long as we replace α → α + γ .

Indeed, to check this within the replica trick framework, once introuced n replicas of the
system, we can consider the following partition function

ZN (β, α, γ ) =
∑

σ

exp

⎛

⎝ β

2N

N∑

i, j=1

p+k∑

μ=1

ξ
μ
i ξ

μ
j σiσ j

⎞

⎠ , (36)
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where the first p = αN patterns have real entries sampled from i.i.d. Gaussians N (0, 1)
and the last k = γ N have Boolean entries ±1. We want to compute the averaged replicated
partition function Eξ Zn , taking then the limn→0(Eξ Zn − 1)/n = Eξ log Z en route for the
free energy [18,48]. We get

Eξ Z
n =

∑

σ

∫

dμ(z)Eξ exp

⎛

⎝βN

2

n∑

a=1

m2
1(σ

a) +
√

β

N

n∑

a=1

N∑

i=1

p+k−1∑

μ=1

ξ
μ
i σ a

i z
a
μ

⎞

⎠ , (37)

where, via the first term inside the exponential, we highlighted the pattern to retrieve while
for the other we have introduced n × (p + k − 1) Gaussian random variables to linearize
the interactions. Indeed, the resulting second term represents the noise stemming from non-
condensed patterns [10,11] and we are going to see that it is universal w.r.t. the pattern
distribution. In fact,

Eξ exp

⎛

⎝

√
β

N

n∑

a=1

N∑

i=1

p+k−1∑

μ=1

ξ
μ
i σα

i z
α
μ

⎞

⎠ = exp

⎡

⎣
N∑

i=1

p+k−1∑

μ=1

uξ
μ
i

(√
β

N

n∑

a=1

σ a
i z

a
μ

)⎤

⎦

∼ exp

⎛

⎝
N∑

i=1

p+k−1∑

μ=1

β

2N

n∑

a,b=1

σ a
i σ b

i z
a
μz

b
μ

⎞

⎠ .

where we used that the pattern distributions are both symmetric and with unitary variance,
hence uξ (x/

√
N ) = logEξ (eξ x/

√
N ) = x2/N + o(1/N ). Then, the effective load of the

network is given by the term

∫

dμ(z) exp

⎛

⎝
N∑

i=1

p+k−1∑

μ=1

β

2N

n∑

a,b=1

σ a
i σ b

i z
a
μz

b
μ

⎞

⎠

= exp

⎡

⎣(α + γ )N
∫

dμ(z) exp

⎛

⎝
N∑

i=1

β

2N

n∑

a,b=1

σ a
i σ b

i z
azb

⎞

⎠

⎤

⎦ , (38)

that is the usual [7,32] slow noise but proportional to the total load α + γ this time.

4 The Inverse Process

In this final section we briefly illustrate that proceeding first with the Hamilton-Jacobi for-
malism and then with the stochastic stability is equivalent to the process we described in
Sect. 3.

In this route, instead of the generalized partition function defined in (17), we have the
following:

ZN ,k,p(t, x) =
∑

σ

exp

{
t

2N

N∑

i, j=1

k∑

ν=1

ξ̃ ν
i ξ̃ ν

j σiσ j +
k∑

ν=1

xν

N∑

i=1

ξ̃ ν
i σi

}

× exp

{

−kβ

2
− β

2N

N∑

i=1

p∑

μ=1

(ξ
μ
i )2 + β

2N

N∑

i, j=1

p∑

μ=1

ξ
μ
i ξ

μ
j σiσ j

}

,
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where we can notice the Hamilton–Jacobi scaffold in the interpolation of the Boolean section
of the system. We recover the proper partition function if we put t = β and x = 0, while if
t = 0 and x = 1 we obtain a one-body problem for the Boolean memories.

Even though the generalized free energy is nowdefined through this newpartition function,
the equations for its derivatives expressed in (21) still hold and therefore we can proceed
with the Hamilton-Jacobi formalism adopting the same argument we used in Sec. 3. So
Eqs. (22), (23) and (24) still hold, but now the initial state function AN ,k,p(0, x) is

AN ,k,p(0, x) = 1

N
E ln

{

exp

[

−kβ

2
− β

2N

N∑

i=1

p∑

μ=1

(ξ
μ
i )2

]∑

σ

exp

[ k∑

ν=1

xν

N∑

i=1

ξ̃ ν
i σi

]

× exp

[
β

2N

N∑

i, j=1

p∑

μ=1

ξ
μ
i ξ

μ
j σiσ j

]}

.

This function is now interpretable as the free energy density at a finite volume N of a
Hopfield network with p real patterns and an external field (that this time contains patterns
of information), so we can now use the stochastic stability technique to write an explicit form
of the expression above. To do so, we introduce the variable ψ ∈ [0, 1] and the interpolated
free energy density:

AN ,k,p(0, x, ψ) = − O

(
ln N

N

)

− αNβ

2
+ 1

N
E ln

(∑

σ

exp

{∑

ν

∑

i

xν ξ̃
ν
i σi

}

×
∫

Rp
Dz exp

{
√

ψ

√
β

N

p∑

μ=1

N∑

i=1

ξ
μ
i σi zμ

}

× exp

{

A
√
1 − ψ

N∑

i=1

ηiσi

}

× exp

{

B
√
1 − ψ

p∑

μ=1

θμzμ

}

× exp

{

C 1 − ψ

2

p∑

μ=1

z2μ

})

.

Mirroring the previous modus operandi, we can now apply the Fundamental Theorem of
Calculus inψ , perform analogous calculations and substitute the values of the free parameters
according to (30). What we obtain is:

AN ,k,p(0, x) = AN ,k,p(0, x, ψ = 1) = AN ,k,p(0, x, ψ = 0)

+
∫ 1

0
dψ (d ′

ψ AN ,k,p(0, x, ψ
′))ψ ′=ψ

= − O

(
ln N

N

)

− αNβ

2
+ ln 2 + 1

N

N∑

i=1

E ln cosh

( k∑

ν=1

ξ̃ ν
i + √

αNβ p̄ ηi

)

− αN

2
ln
(
1 − β(1 − q̄)

) + αNβq̄

2
(
1 − β(1 − q̄)

) − αNβ

2
p̄(1 − q̄).

Now, recalling that the solution to (24) is defined by (25), and that �N ,k,p = eN AN ,k,p , we
can write the free-energy density at a finite volume N as

AN ,k,p(t, x) = −O

(
ln N

N

)

− αNβ

2
+ 1

N
ln

(
N

2π t

)k/2

+ 1

N
ln

∫

Rk
e−Ng(t,x,x ′),
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where

g(t, x, x ′) =
N∑

i=1

(
xi − x ′

i

)2

2t
− ln 2 − 1

N

N∑

i=1

E ln cosh

(
k∑

ν=1

ξ̃ ν
i xν + √

αNβ p̄ ηi

)

+ αN

2
ln (1 − β(1 − q̄)) − αNβq̄

2
(
1 − β(1 − q̄)

) + αNβ

2
p̄(1 − q̄).

In the thermodynamic limit the free-energy density is consequently obtained by (28) with
the help of a saddle point argument. So, fixing the parameters t and x to be t = β, x = 0 and
finding that the minimum of the function g is determined by x ′

ν = β〈mν〉, we obtain again
Eq. (32).

5 Conclusions

The Hopfield neural network and the restricted Boltzmann machine are amongst the best
known and intensively studiedmodels inArtificial Intelligence. The former ismeant tomimic
retrieval, namely the capacity of (the neurons of) a machine to recall a pattern of information
previously stored. The latter is meant to mimic learning, namely the capacity of (the synapses
of) a machine to be trained to encode selected patterns of information. Remarkably, Hopfield
networks and Boltzmann machines share the same thermodynamics. This equivalence has
several implications and, in particular, it implies that the conditions under which the former
is able to retrieve are the same conditions under which the latter is able to identify features
in the input data. In fact, in this equivalence, the patterns of information retrieved by the
Hopfield model corresponds to the optimized weights of the trained Boltzmann machine.

However, in the wide Literature concerning these models, the patterns handled by the
Hopfield model are typically binary, while the weights the Boltzmann Machine usually ends
up with are real: this gap looks structural since the retrieval of real patterns (at least in
the high-load regime) is beyond the Hopfield model capabilities [10,11]. While numerical
understanding in the field increases at an impressive rate, analytical improvements proceed
more slowly. In order to get further insights into this point through the analytic perspective, in
this work we considered a mixed Hopfield network, where patterns are partly real and partly
binary and we studied its statistical mechanical properties (i.e., we focused on the behavior
of averaged systems in the thermodynamic limit, which is not the typical benchmark for
reseachers in Computer Science).

In particular, we rigorously answered (positively) to the question of whether such a hybrid
networkwith a high-load of analog patterns and a low-load of binary patterns is able to retrieve
the latter, under replica symmetry assuption. On the other hand, the retrieval of a high-load of
analog patterns is already known to be unfeasible [10,25]. We proved that the hybrid model
shares the same phase diagram of the classic Hopfield network with a high storage of Boolean
patters only: in the parameter space, where parameters are given by the fast noise (i.e., the
temperature) and by the slow-noise (i.e., the “sea” of analog patterns), there exists a retrieval
region bounded by a first-order transition line.

This result has been achieved by developing a novel interpolating technique stemming
from Guerra’s interpolation schemes (see [13–16]). In a nutshell, exploiting the above men-
tioned equivalence, we recast the hybrid Hopfield model in terms of its related Boltzmann
machine and then we ask for stochastic stability of the bulk of patterns (hence the real ones).
We interpolate between the free energy of the mixed Hopfield model and two one-body ran-
dom systems (whose factorized treatment becomes straightforward). This approach allows
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us to recognize, within the free energy contribution due to real patterns, another nestling
free-energy density due to the Boolean contribution of the binary patterns. The latter can
then be extracted via the Hamilton-Jacobi route in terms of its natural order parameters. This
approach allows detecting when the signal carried by a logarithmic load of Booleans is strong
enough to shine over the noisy sea generated by the extensive storage of Gaussian patterns.

The case of high load of real as well as binary patterns can be addressed via a fairly
standard replica-trick calculation obtaining evidence that the outlined scenario is preserved
as long as the sum of the two slow noises (stemming from the two contributions of real
and binary patterns) does not exceed the standard threshold found for the original Hopfield
network [7].

Finally, we stress that the mathematical machinery we exploited here does not allow us
to check when the replica symmetric solution is the correct solution (i.e. it does not prove
or find out boundaries of validity for the overlap distributions to be delta-peaked over their
averages in the thermodynamic limit), rather it assumes this and shows its implications. A
mathematically completely different route, developed by Bovier and Gayard [26,28] and
Talagrand [54,55] for the standard Hopfield model, just investigates the existence of regions
in the tuneable parameter space where this assumption is feasible: a rigorous inspection
through these techniques on the existence of such allowed retrieval-regions is mandatory
also for this mixed Hebbian network and its analysis would be the next natural step of the
present investigation.

Acknowledgements E.A. acknowledges financial support from GNFM-INdAM (Progetto Giovani Agliari-
2016). A.B. acknowledges financial support from Salento University and by INFN Sezione di Lecce. D.T.
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Appendix A: Calculating theψ-Streaming of the Interpolating Free Energy

As anticipated in Sect. 3, in this appendixwewill illustrate the calculations of theψ-derivative
of the generalized free energy density AN ,k,p(t, x, ψ) written in Eq. (29).

When evaluating the streaming dψ AN ,k,p(t, x, ψ) we get the sum of four terms: I , II,
III and IV, that we analyse shortly. Each one comes as a consequence of the derivation of a
corresponding exponential term appearing into the expression of the generalized free energy
density, whose generalized partition function ZN ,k,p(t, x, ψ) is defined in (17).

We remind that we introduced in Sect. 3 the generalized average 〈·〉t,x,ψ , that naturally
extends the Gibbs measure encoded in the interpolating scheme (and is reduced to the proper
one whenever setting t = β, x = 0 and ψ = 1). To lighten the expressions, we introduce the
function BN ,k,p(t, x, ψ) that stands for the generalized Boltzmann factor.
We can now show the calculations of terms I , II, III and IV :

I = 1

N
E

[∑

σ

∫

dM(z)

√
β

N

N∑

i=1

p∑

μ=1

ξ
μ
i σi zμ × 1

2
√

ψ
BN ,k,p(t, x, ψ)

]

(A.1)

=
√

β

2N
√
Nψ

N∑

i=1

p∑

μ=1

E

[

ξ
μ
i ωt,x,ψ (σi zμ)

]

(A.2)

=
√

β

2N
√
Nψ

N∑

i=1

p∑

μ=1

E

[

∂ξ
μ
i
ωt,x,ψ (σi zμ)

]

(A.3)
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= β

2N

p∑

μ=1

Eωt,x,ψ (z2μ) − αNβ

2
〈q12 p12〉t,x,ψ , (A.4)

I I = 1

N
E

[
1

ZN (t, x, ψ)

∑

σ

∫

dM(z)
−A

2
√
1 − ψ

N∑

i=1

ηiσi BN ,k,p(t, x, ψ)

]

(A.5)

= − A
2N

√
1 − ψ

N∑

i=1

E

[

ηiωt,x,ψ (σi )

]

(A.6)

= − A
2N

√
1 − ψ

N∑

i=1

E

[

∂ηi ωt,x,ψ (σi )

]

(A.7)

= −A2

2

(
1 − 〈q12〉t,x,ψ

)
, (A.8)

I I I = 1

N
E

[
1

ZN (t, x, ψ)

∑

σ

∫

dM(z)
−B

2
√
1 − ψ

p∑

μ=1

θμzμBN ,k,p(t, x, ψ)

]

(A.9)

= − B
2N

√
1 − ψ

p∑

μ=1

E

[

θμωt,x,ψ (zμ)

]

(A.10)

= − B
2N

√
1 − ψ

E

[

∂θμωt,x,ψ (zμ)

]

(A.11)

= − B2

2N

p∑

μ=1

Eωt,x,ψ (z2μ) + αNB2

2
〈p12〉t,x,ψ . (A.12)

In these three equations we used integration by parts (Wick’s Theorem), and we manipulated
the expressions in order to let the order parameters q12 and p12 appear (for their general
definitions seeEqs. (12) and (13)). Term I V is easily computed through the standardGaussian
integration:

I V = 1
N E

[
1

ZN ,k,p(t,x,ψ)

∑
σ

∫
dM(z) −C

2

∑p
μ=1 z

2
μBN ,k,p(t, x, ψ)

]

= −C
2N

∑p
μ=1 Eωt,x,ψ (z2μ).

(A.13)

Summing the final expressions of Eqs. (A.4), (A.8), (A.12) and (A.13) we have:

d AN ,k,p
dψ

(t, x, ψ) = 1
2N

(
β − B2 − C)∑p

μ=1 Eωt,x,ψ (z2μ)

− αNβ
〈q12 p12〉t,x,ψ − A2

2

(
1 − 〈q12〉t,x,ψ

) + αNB2

2 〈p12〉t,x,ψ ,

which is what we reported in Eq. (29).
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