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Abstract. An explicit lifespan estimate is presented for the derivative Schrödinger
equations with periodic boundary condition.

1. Introduction. We consider the Cauchy problem for the following derivative
nonlinear Schrödinger (DNLS) equation:{

i∂tu+ ∂2xu = λ∂x(|u|p−1u), t ∈ [0, T ), x ∈ T,
u(0) = u0, x ∈ T

(1)

on one-dimensional torus T = R/2πZ, where p > 1 and λ ∈ C\{0}. The aim of this
paper is to study an explicit upper bound of lifespan of solutions for (1) in terms
of the data u0 in the case Reλ 6= 0.

The original DNLS equation is DNLS on R with p = 3 and λ = −i with additional
terms, which was derived in plasma physics for a model of Alfvén wave (see [13, 18]).
By a simple computation, if λ ∈ iR, then we have the charge (L2) conservation law
for solutions of DNLS with any p > 1 in the case of both torus and Euclidean
space. The well-posedness for the original DNLS without additional terms has
been studied, for example, in [2, 3, 7, 8, 9, 10, 12, 17, 20, 24]. Furthermore, the
Cauchy problem (1) with p = 3 and λ ∈ iR has also been studied, for example, in
[1, 6, 11, 15, 21, 23, 24]. Especially, the global well-posedness of (1) in the frame
work of Hs(T) with s ≥ 1/2 has been studied by Win [25] and Mosincat [14] in
the case where the charge of initial data is sufficiently small. Here Hs(T) denotes
the standard Sobolev space defined by Hs(T) = (1 − ∆)−s/2L2(T). However, the
blowup problem for DNLS is still open in a general setting, where the conservation
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law is insufficient or fails, for examples, in the case where p = 3, λ = iR, and the
charge of initial data is large. Partial results have been obtained in [22].

On the other hand, Sunagawa [19] studied the finite time blow-up of{
i∂tu+ ∂2xu = λ|u|p−1∂xu, t ∈ [0, T ), x ∈ T,
u(0) = u0, x ∈ T

(2)

when p = 3 and Reλ 6= 0, where (2) is connected with the gauge transformation of
(1). Indeed let v be a solution for{

i∂tv + ∂2xv = −i∂x(|v|2v), t ∈ [0, T ), x ∈ R,
v(0) = v0, x ∈ R.

Then the gauge transformed solution w defined by

w(t, x) = v(t, x) exp

(
i

2

∫ x

−∞
|v(t, y)|2dy

)
satisfies

i∂tw + ∂2xw = −i|w|2∂xw, t ∈ [0, T ), x ∈ R.

For related subjects, we refer the reader [8, 9, 10, 11]. He showed that solutions of
(2) blow up when

−sgn(Reλ) · Im
∫
T
u0(x)∂xu0(x)dx > 0.

Namely, in the case where Reλ 6= 0, solutions may blow up even when their charge
is arbitrary small. We remark that the condition p = 3 plays a crucial role in his
argument.

In this article, we study the finite time blowup of solutions for (1) in the case
where Reλ 6= 0 and p > 1 by using a simple ODE argument. We remark that in
this case, the conservation law fails and will show that there exists no L2 global
solution in a certain case. For the ODE approach, we refer the reader [4, 5, 16].

An obvious global solution for (1) is u(t, x) = C for C ∈ C. So it is necessary
to consider a set of initial data without constants in order to show the finite time
blowup of (1). Here we consider the initial data and solutions with vanishing total
density defined as follows:

Definition 1.1. For u0 ∈ H2(T) satisfying

∫
T
u0(x)dx = 0, u is called a strong

solution with vanishing total density of the Cauchy problem (1) if there exists

T ∈ (0,∞] such that u ∈ C1([0, T );H2(T)) satisfies (1) and

∫
T
u(t, x)dx = 0 for any

t ∈ [0, T ).

Remark 1. Formally,

d

dt

∫
T
u(t, x)dx = (2π)1/2

d

dt
û(t, 0) = −i(2π)1/2F

[
− ∂2xu+ λ∂x(|u|p−1u)

]
(0) = 0.

This implies that if

∫
T
u0(x)dx = 0, then

∫
T
u(t, x)dx = 0 for any t ∈ [0, T ).
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In this article, for H2(T) initial data with vanishing total density, we assume the
existence of strong solutions with vanishing total density. We define the lifespan T0
of a strong solution u to the Cauchy problem (1) by

T0 = sup{T > 0; u is a strong solution for (1)}.

Then, from the ordinary differential inequality for

∫ 2π

0

∫ x

0

u(·, x)u(·, y)dy dx, we

may obtain the equivalent conditions for the finite time blowup for (1) and estimate
of lifespan.

Proposition 1. Let u0 ∈ L2(T) satisfy

∫
T
u0(x)dx = 0. Then the following state-

ments are equivalent:

(i) u0 satisfies

Reλ · Im
∫ 2π

0

∫ x

0

u0(x)u0(y)dy dx > 0. (3)

(ii) There exists α ∈ C such that

Reα · Reλ > 0, Im

(
α

∫ 2π

0

∫ x

0

u0(x)u0(y)dy dx

)
> 0. (4)

If u0 satisfies one of the equivalent conditions above and u0 ∈ H2(T), then the
corresponding strong solution with vanishing total density of the Cauchy problem
(1) blows up in finite time. Moreover, the associated lifespan is estimated by

T0 ≤
(2π)p

(p− 1)|Reλ|

∣∣∣∣ ∫ 2π

0

∫ x

0

u0(x)u0(y)dy dx

∣∣∣∣−
p−1
2

.

Remark 2. For f ∈ L2(T) with vanishing total density,

Re

∫ 2π

0

∫ x

0

f(x)f(y)dy dx =
1

2

∫ 2π

0

d

dx

∣∣∣∣ ∫ x

0

f(y)dy

∣∣∣∣2dx =
1

2

∣∣∣∣ ∫ 2π

0

f(x)dx

∣∣∣∣2 = 0.

This means ∫ 2π

0

∫ x

0

f(x)f(y)dy dx ∈ iR.

Then, (3) and (4) can be rewritten by

−iReλ ·
∫ 2π

0

∫ x

0

u0(x)u0(y)dy dx > 0,

Reα · Reλ > 0, −iReα ·
∫ 2π

0

∫ x

0

u0(x)u0(y)dy dx > 0,

respectively. This rewriting implies the equivalence between (3) and (4).

Remark 3. In contrast to nonlinear Schrödinger equation of nonlinearity with-
out derivative and Reλ 6= 0, it is unknown that whether Virial type identity
works or not. On the other hand, in order to show Proposition 1, we show that∫ 2π

0

∫ x

0

u(·, x)u(·, y)dy dx, is a super solution of an ordinary differential equation

and which implies that the amount blows up at a finite time.
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2. Proof of Proposition 1. Let Mα(t) = Im

(
α

∫ 2π

0

∫ x

0

u(t, x)u(t, y)dy dx

)
,

where α satisfies (4). Then Mα(t) > 0 for sufficiently small t. By a direct cal-
culation, we have

d

dt
Mα(t) =Im

(
α

∫ 2π

0

∫ x

0

∂tu(t, x)u(t, y)dy dx

)
+ Im

(
α

∫ 2π

0

∫ x

0

u(t, x)∂tu(t, y)dy dx

)
=I1 + I2.

By the vanishing total density, I1 and I2 may be computed as follows:

I1 =− Re

(
α

∫ 2π

0

i∂tu(t, x)

∫ x

0

u(t, y)dy dx

)
=− Re

(
α

∫ 2π

0

∂x(−∂xu(t, x) + λ(|u(t, x)|p−1u(t, x)))

∫ x

0

u(t, y)dy dx

)
=− Re

(
α(−∂xu(t, 2π) + λ(|u(t, 2π)|p−1u(t, 2π)))

∫ 2π

0

u(t, y)dy

)
+ Re

(
α

∫ 2π

0

−u(t, x)∂xu(t, x) + λ|u(t, x)|p+1dx

)
=Re

(
α

∫ 2π

0

−u(t, x)∂xu(t, x) + λ|u(t, x)|p+1dx

)
,

I2 =Re

(
α

∫ 2π

0

u(t, x)

∫ x

0

i∂tu(t, y)dy dx

)
=Re

(
α

∫ 2π

0

u(t, x)(−∂xu(t, x) + λ(|u(t, x)|p−1u(t, x)))dx

)
− Re

(
α(−∂xu(t, 0) + λ(|u(t, 0)|p−1u(t, 0)))

∫ 2π

0

u(t, x)dx

)
=Re

(
α

∫ 2π

0

u(t, x)(−∂xu(t, x) + λ(|u(t, x)|p−1u(t, x)))dx

)
.

Then,

d

dt
Mα(t) =− Reα ·

∫ 2π

0

2Re(u(t, x)∂xu(t, x))dx+ 2Reα · Reλ‖u(t)‖p+1
Lp+1(T)

=− Reα ·
∫ 2π

0

∂x|u(t, x)|2dx+ 2Reα · Reλ‖u(t)‖p+1
Lp+1(T)

=2Reα · Reλ‖u(t)‖p+1
Lp+1(T).

Since

|Mα(t)| ≤ |Reα|‖u(t)‖2L1(T) ≤ (2π)
2p

(p+1) |Reα|‖u(t)‖2Lp+1(T),

we have
d

dt
Mα(t) ≥ 2(2π)−p|Reα|−

p+1
2 Reα · ReλMα(t)

p+1
2 .

This and Mα(0) > 0 implies

Mα(t) ≥ (Mα(0)−
p−1
2 − (p− 1)(2π)−p|Reα|−

p+1
2 Reα · Reλ t)−

2
p−1 > 0.
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Therefore

T0 ≤ inf

{
(2π)p|Reα|

p+1
2

(p− 1)Reα · Reλ
Mα(0)−

p−1
2 ; α ∈ C, Reα · Reλ > 0

}
≤ (2π)p

(p− 1)|Reλ|

∣∣∣∣ ∫ 2π

0

∫ x

0

u0(x)u0(y)dy dx

∣∣∣∣−
p−1
2

.

Here the infimum may be attained with α = λ.
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