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Helicity is the only finite-type topological invariant of
magnetic fields

Let a magnetic field B, div(B) = 0 has a support inside the unit ball D C R3.
Denote by 2 the vector space of magnetic fields, equipped with C* topology.
Let SDiff be the group of diffeomorphisms of D preserving the volume
element. The standard action

A:SDiff xQ— Q
is well-defined. Let us call a continuous function
F:Q—-R

a polynomial-type invariant of magnetic fields if the following conditions are
satisfied:

—1. F'is invariant with respect to A.

~2. F(B) is defined as the restriction of an r-polylinear function

~

F(B1,B,,...,B,) — R onto the diagonal B=B; =By, =--- = B,.

Example: Helicity quadratic invariant of magnetic fields G?sm*

Define the helicity of B by the formula:

= [,

where A is the vector-potential of B, rot(A) = B, div(A) = 0, A(z) — 0,
for x — oo.



Topological properties of helicity was discovered by M.Berger and
G.Field (1984)

Theorem by S.S.Podkoritov (2004) (proof is easy)

An arbitrary finite-type invariant satisfies the equation: F(B"") = 0, where
B"" is a vector field, which is a model for the Whitehead link:
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Helicity is the asymptotic Hopf invariant (V.I.Arnol’d
(1974))

Define the Gaussian linking number of two trajectories of B issuing from z
and x, for the large value T of time:

A(T Zy, .’L‘Q

/ / (T1(t1), T2 (ta), 1 (t1) — (t2)>dt1dt2,

" 4 T? lz1(t) — @2(t2) [P

where z;(t;) = g"(x;), i = 1,2 are the trajectories of the point z;, given by
the flow of B, @;(t;) = d“tl gtmz:Z are corresponding velocity vectors.
The following formula is satisfied:

= lim // (T; x1, xo)dx1dx>.
T—+o00

Poincaré recurrence theorem

Let {g" : Q — Q} is a flow generated by a magnetic field B. For an (almost
arbitrary) point x € R? and for an arbitrary € > 0, there exists a real t, > 0,
to = to(x, ), such that dist(g"(z),z) < e.

Almost all trajectories of the magnetic field B are almost closed.

A non-formal definition of the helicity y by means of asymptotic

Hopf invariant
://A(ll,lg)deQ,

where Q) is the spectrum (the space of all magnetic lines) of the field B,
ll,lg S Q7 A(ll,lg) = hmT_H_OO A(T;J]l,l‘g), T; € lu 1= 1, 2.

A problem by V.I.Arnol’d

V.I.Arnol’d has formulated the following problem (1984-12): | To transform
an asymptotic ergodic definition of the Hopf invariant for a divergence-free
vector field to a theory by S.P.Novikov to generalize the Whitehead product
in homotopy group of spheres*.



A strategy toward the problem by V.I.Arnol’d

1. To find-out a finite-type invariant I, which satisfies Asymptotic and Sta-
bility properties.

2. To test an integral expression of [ for asymptotic invariant of magnetic
fields.

Example: Quadratic helicity y? G%sm’®

1
I(Ly, Ly, L) = B[Zk(Ll,Lg)lk Lo, L3)+1k(Lo, L3)lk(Ls, L1)+1k(Ls, L1)lk(Lq, L)),

Y = / / / (11, I, 15)dQdQdQ,

1
P(ly,ls,13) = g[A(ll, I2)A(lo, l3) + A(la, I3)A (I3, 11) + A(l3, 1) A(1y, 1o)],
ll, lQ, 13 e Q.

Main result: a higher asymptotic invariant 1 G'?sm°

For m = 3 there exist an asymptotic invariant M of the degree 12, which is
not a function of pairwise linking numbers of components.

The invariant M is skew-symmetric, if at least 2 of the 3 linking numbers of
components are trivial then M = 0.

The upper z and the lower py asymptotic invariants of divergence-free vector
fields with respect to volume preserved diffeomorphisms are well-defined.

In the case all trajectories of B are closed, we get: fig = Hs which is asso-
ciated with M



Proof of the Main result

The invariant M is finite-type invariant. An integral formula of M is in

On a new integral formula for an invariant of 3-component oriented links,
Journal of Geometry and Physics, 53 (2005) 180-196 (by the author).

All the terms in this integral formula, applying for B, admit asymptotic
limits 7" — +o0o (lower and upper). In the case the trajectories of B are
closed the lower and the upper limits coincide.

Asymptotic combinatorial invariants
Two operations for framed oriented links

Let I be a finite-type invariant of classical oriented m-component links in R"
(a generalized Whitehead product). We shall give necessary conditions that
I is a (higher) asymptotic invariant.

Let (L, &) be an arbitrary m-component framed link. For an arbitrary
integer r € Z let us define a framed m-component link r(L, &), the compo-
nents of this link are defined by the replacement of the corresponding framed
component (L;,&;) of the oriented framed link (L,§), i = 1,...m to the
component r(L;,&;), which is the standard (r,1)-time winding along L;.

Let (L,&; Lo) be an arbitrary framed (m — 1)—component link with
a marked component Ly C L. Let us define m—component framed link
(L,&; Lo)'. The (m — 2) components of the link (L, ¢) are transformed by
the identity. The marked framed component (Lo, &) of the link L is trans-
formed to the pair of parallel framed components (Lal,&g,l;Lg,z,fgg), the
first component coincides with L, the second is defined by a small shift of
the component Ly along the frame &.

For a (m — 1)—component framed link (L,&; Ly) with one marked com-
ponent and an integer r let us define two framed m-component links:

r((L, & Lo)"), (r(L, & Lo))".



Finite-type asymptotic invariants of oriented links

Let us say that a finite-type invariant [/ for m-component links is an asymp-
totic invariant of the degree s (the degree of the invariant I is distinguished
from its order), if the following two equations are satisfied:

Asymptotic property

Stability property
I(r((L,& Lo)")) = I((r(L, & Lo))") + o(r*),

where o(r®) is a polynomial of r of the degree less then s, coefficients of this
polynomial depend only on the isotopy class of the framed link (L, &).

Conway polynomial

for m—component link L:
Vi(z) = 2™ Heg + 122 + - 4 e, 2™).

m = 2 ¢o(L) coincides with linking coefficient 1k(Ly, Ls).
m =1 ¢;(L) is the Casson’s invariants of knots.

2-component k-Hopf links LJ]_r[Opf<k)’ L;—Iopf<k)
The link L, +(4) = (Lo, &0)", 1k(Lo, &) = 4:



Generalized Sato-Levine invariant

The simplest invariant of 2-component links, discovered by M.Polyak and
O.Viro (1994). This invariant is skew-symmetric, order 3.

Matveev S., Polyak M., A simple formula for the Casson-Walker invari-
ant, Journal of Knot Theory and Its Ramifications, 18:6 (2009), 841-864;
arXiv:0811.0606.

The formula for the Generalized Sato-Levine

B(L) = c1(L) — co(L)(e1(Ly) + e1(L2)) — P(L),

where
k+1)k(k—1)
6 ?
Ryo Nikkuni (2008), Homotopy on spatial graphs and Generalized Sato-
Levine Invariants, arXiv:0710.3627v2.

P = co(L) = k.

In the case ¢y(L) = 0 we get 5(L) = ¢1(L) is the Sato-Levine invariant.

Relationship with Milnor’s p-invariants (Whitehead products)
Assume L = ((Lo, &), (L1,&1)), 1k(Lo, &) = lk(L1,&1) = 0, Ik(Lg, L1) = 0.
The equation is satisfied:

B(L) = M1,1,2,2((L0, fo)T> (Ll, 51)T)-

Skein-relation for Generalized Sato-Levine invariant

For a homotopy of Ly (or on L) with self-intersection point x the equation
is satisfied:

B(Ly) — B(L-) = O(x)lk(ly, L2)lk(l-, L),

O(z) is the sign of the self-intersection point x, [, [_ are the loops on L; (or
on LQ)



Skein relation for Casson invariant

For a A-move of L with we get:
Ci(Ly) = Ci(Lo) = Sty — St

where St (St_) is the strangeness (in the sense of V.I. Arnol’d) of the
projection of the knot L, (L_) on the plane.

Generalized Sato-Levine invariant § and Casson invariant C)(L)

Let (L, &) be a framed knot. The following formula is satisfied:
B((L, &)") = 2lk(L, )Cy(L). (1)

Normalization

B(Lfrops(F)) =0, B(Lig,,, (k) = =P(k).

Generalized Sato-Levine invariant is not an asymptotic invariant

The following equation is satisfied:
Ir(L,ON) = Ar' + ..., I((r(L,&)))=Br° +...,

where the coefficients A, B depends only on L. If (k(L,§) = 0, B = 0.
Stability Property satisfies only in the case (k(L, &) = 0.

Proof: From Skein relation for the Generalized Sato-Levine invariant we get
s = 4. From the Skein relation for the Casson invariant and the formula (1)
we get s = D.



Melikhov’s invariant
v is symmetric order 4 invariant of 3 component links.
L - Ll U LQ U L3,
(L) = e (L)—

((1,2)(2,3) +(2,3)(3,1) + (3, 1)(1,2))(c1 (L) + c1(L2) + e1(L3))
—=((3,1) +(2,3))(e2(L1 U L2) — (1,2)(c1(L1) + e1(L2)))
—((1,2) + (3,1))(e1(L2 U Ls) — (2,3)(c1(L2) + c1(L3)))
(2,3) + (1,2))(cr(Ls U L1) — (3,1)(ea(Ls) + ea(Ln))),

—(
where (7, 7) are the linking numbers k(L; U L;) of the pair of components L;,
Lj,i,j=1,2,3,1# j, of the link L is defined.

Invariant M

M(L) - (17 2)(27 3) (37 1)7(]:‘)_
(1,2)%(1,3)28(La U L3) + (2,3)%(2,1)*8(Ls U Ly) + (2,3)%(2,1)?8(Ls U Ly).

Properties of M

1. M is skew-symmetric order 7 invariant for 3-component oriented links,
which is not a function of the linking numbers of components.

2. If at least 2 of the 3 linking numbers (1,2), (2,3), (3,1) are trivial, M = 0.

3. A perturbation

r(L, &) — (r(L,§))
of a component of r(L, ) by means of an arbitrary r-strains braid keeps the
invariant M, in particular M (r(L,&)) is independent of framings. (Remark:

The linking number (k(L1, L) of components of two-component links satisfies
an analogous property.)



Asymptotic invariant M

Assuming that (1,2)(2,3)(3,1) # 0 define the invariant M by the formula:

M((2,3)Ly, (3,1)La, (1,2)L3))

M(L) = (1,2)4(2,3)(3,1)*

+R((1,2),(2,3),(3,1)),

where (L) = (L, Lo, L3), R((1,2),(2,3),(3,1)) is a suitable polynomial (pro-
viding the normalization), which depends only on linking numbers of the
components.

Theorem

The invariant M is extended to a finite-type invariant for 3-component links
without the assumption (1,2)(2,3)(3,1) # 0. This is an asymptotic invariant
of the degree 12 with the normalization property:

M(LHOpf(kl,k‘z,kg)) 0,

where L}}Opf(kl, ks, k3) is the simplest 3-component link with the given pair-

wise linking numbers of components.

Quadratic magnetic helicity y®
Definition of y®
Let B is a divergence-free vector field in D. Define A® by the formula:

AO (T 2) = 7}2(/ (#(r), A)dr)?,

where z(7) = ¢"(z) is a trajectory of B issuing from z, i(7) = Lg¢"2 = B(z)
is the corresponding vector of velocity. Define

—hmsup/A (T;x)

T—+o0
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Quadratic magnetic helicity Y is well-defined
By the Cauchy-Bunyakovsky-Schwarz inequality we get:

AT 2) < T/(jc(T),A)%ZT.
Therefore

/A2>Tde<—// V2drdD = /BA )2dD.

/ A®(T;2)dD < 5@

where

63 = /(B, A)%dD.

Quadratic magnetic helicity y(? is an invariant
By the induction equation we get:

0A

ot
where f is a function on U with a prescribed boundary conditions, which
satisfies the equation

=v x B —gradf,

Af =div(v x B).

The integral trajectory x(7) of B is transformed into the trajectory

(1) =x(r) + de(r) = z(7) + d(rot(v(z(7)) x B(x(7)))).

In each point of z(7) the following equations are satisfied:

(gt + Ly)A = gradf,
0
L,)B =
(0 4 L)B=0,

where Ly is the Lee derivative along the vector field v, @(7) = B(z(7)).

11



The value A is transformed by the following formula:
AT z) = AD(T; 2)+

(| B, A [ @), G+ LAG@)r +

| (G + LB, A()ar).
Therefore,

AT z) = AD(T; 2) —I—/O (B(z(7)), grad f(x(7)))dt.

To prove the invariance of () it is sufficiently to prove that the transforma-
tion

/A(2)(T; z)dD /A(2)(T;x)dD+

T2 // ))dtdD)( // ), gradf(z(7)))dtdD)+

T2 // ), grad f(z(7))dtdD)?

is the identity for 7" — +o00. By the Newton-Leibniz theorem we get:

[ (B gradswr)ip = sia(o) - fta(r) < €
where C' depends on f, and is not depend on T'. Therefore,
/ AT 2)dD — / A®(T;2)dD + T7Cy,
where C] is bounded for T — +o00. Therefore we have:

limsup/Ag)(T; x)dD limsup/A(Q)(T;x)dD.

T—4o00 T—400

The integral y(? is an invariant with respect to volume-preserving diffeomor-
phisms.

Inequalities

2
5@ >4 @ > X5
=X _Vl()

All values in this inequalities have the dimension Gism?.

12



Geometrical meaning of quadratic magnetic helicity y?

Example 1

Assume that a magnetic field B is localized inside the only flat thin magnetic
tube U C D, all the trajectories of B are closed. This magnetic tube U is
characterized by the following parameters:

— & is the magnetic flow trough the transversal cross-section of the tube,

— K € Z is the twisting coeflicient of trajectories along the central axis of
the tube (this twisting coefficient is integer and equals to the linking number
of a pair of trajectories of B)

— L is a length of the central line of the magnetic tube,

—Vol is the volume of the magnetic tube.

The magnetic energy is given by the expression:
U =L,
The magnetic helicity is given by the expression:
X = kP,
The quadratic magnetic helicity is given by the expression:

X(2) _ /{2(1)2
Vol

13



Let us consider the following limit (the thickness of the magnetic tube
tends to zero):

k = const, ® =const, L =const, Vol(L)— 0.

Therefore the following equations are satisfied:

U = const, x = const, X(2) — +00.

Remark

For the given configuration of tubes the quadratic magnetic helicity gives no
a lower bound of the magnetic energy.

Example 2

Assume that a magnetic field B is localized inside the pair of thin flat un-
twisted magnetic tubes Uy U Uy C D, all the trajectories of B inside each
tubes are closed and unlinked. The following equation is satisfied:

X(Q) = (Vol(Ly) + VOZ(LQ))_IXQ.

Remark

For the given configuration of tubes the quadratic magnetic helicity gives a
lower bound of the magnetic energy.

14



Application to the induction equation

The following equation is called the induction equation. This equation de-
scribes the evolution of magnetic field in a conductive liquid medium, assum-
ing that the velocity field v of the medium is known:

0B
i rot(v x B) 4+ arotB — nrotrotB. (2)

Remark

The second term in the right side provides a growth of a magnetic field,
this term is due to the helisity of the mean velocity field (the a-effect by
Steenbeck, Krause, Rédler (1966)), or by neutrino (by D.D.Sokoloff and
V.B.Semikoz (2004)). The third term in the right side provides a decrease of
the magnetic field, this term is due to the magnetic dissipation.

Note that the induction equation (2) is not invariant and is not skew-
invariant with respect to a mirror-symmetry. The magnetic energy is an in-
variant, the magnetic helicity is a skew-invariant with respect to a mirror
symmetry.

The following well-known equations are satisfied:

d
d—f - —Qn/(B,rotB)dD + Qa/(B, B)dD = —2ny° + 2aU,

where x¢ is called the current helicity, U is the magnetic energy.

Theorem (x? is a stable invariant)

Assuming the equation (2), the following inequalities are satisfied:

d+/ (2
d>t< < n\//(rotB,B)QdD +77\//(rotrotB,A)2dD+

¢ [ s ¢ [torm. Ay

n(/(rotrotB,rotrotB)4dD)1/8(/(A,A)QdD)1/4—|—

a(/(rotB,rotB)4dD)1/8(/(A,A)QdD)1/4,

where the right side of the equation is a limit of the corresponding difference
ratio.
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The inequality by V.I.Arnol’d

There exists a positive constant C' > 0, which depends on the radius of the
ball D, such that the following inequality is satisfied:

C~2U*(B) > x*(B).
This inequality can be proved by means of the Fourier expansion of the

magnetic field.
The expansion for magnetic field B is:

B =Y (cf + e g

where k is a number of a corresponding wave vector cki.

Variations on the theme of the Arnol’d inequality

Assuming that the magnetic field is given by a power spectrum:

=%z, a=<, c=|c|

The expansion for the magnetic energy is:
E=Y ciet +ee =) lefl’ +lel”
k k
The expansion for the magnetic helicity is:

X=>_bf—b,
k

where all coefficients bf are non-negative.
Then we get:
ar=lep [P+l [P = (v +97)k 7,

b =bf —by = (" =)k

16



The expansion for the square of the magnetic energy is

B — Z 2(vt +97)° f—20H+1

a—1
k

The expansion for the square of the magnetic helicity is:
2
=0,
k

2(yF —7-) 201
— .

b =

The expansion for the correlation tensor of the quadratic magnetic helicity

0 =>"d?.
k

This gives an upper bound for the quadratic magnetic helicity:

is:

+ —
dl(f) < gl ;‘2’7 2o

This gives an intermediate Fourier spectrum for 6 (and therefor for the
quadratic helicity x(®)) with respect to the spectra of U? and 2.
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