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Helicity is the only �nite-type topological invariant of
magnetic �elds

Let a magnetic �eld B, div(B) = 0 has a support inside the unit ball D ⊂ R3.
Denote by Ω the vector space of magnetic �elds, equipped with C∞ topology.
Let SDiff be the group of di�eomorphisms of D preserving the volume
element. The standard action

A : SDiff × Ω→ Ω

is well-de�ned. Let us call a continuous function

F : Ω→ R

a polynomial-type invariant of magnetic �elds if the following conditions are
satis�ed:

�1. F is invariant with respect to A.
�2. F (B) is de�ned as the restriction of an r-polylinear function

F̂ (B1,B2, . . . ,Br)→ R onto the diagonal B = B1 = B2 = · · · = Br.

Example: Helicity quadratic invariant of magnetic �elds G2sm4

De�ne the helicity of B by the formula:

χ =

∫
(A,B)dD,

where A is the vector-potential of B, rot(A) = B, div(A) = 0, A(x) → 0,
for x→∞.
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Topological properties of helicity was discovered by M.Berger and
G.Field (1984)
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Theorem by S.S.Podkoritov (2004) (proof is easy)

An arbitrary �nite-type invariant satis�es the equation: F (BWh) = 0, where
BWh is a vector �eld, which is a model for the Whitehead link:
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Helicity is the asymptotic Hopf invariant (V.I.Arnol'd
(1974))

De�ne the Gaussian linking number of two trajectories of B issuing from x1

and x2 for the large value T of time:

Λ(T ;x1, x2) =
1

4πT 2

∫ T

0

∫ T

0

〈ẋ1(t1), ẋ2(t2), x1(t1)− x2(t2)〉
‖x1(t1)− x2(t2)‖3

dt1dt2,

where xi(ti) = gti(xi), i = 1, 2 are the trajectories of the point xi, given by
the �ow of B, ẋi(ti) = d

dti
gtixi are corresponding velocity vectors.

The following formula is satis�ed:

χ = lim
T→+∞

∫ ∫
Λ(T ;x1, x2)dx1dx2.

Poincar�e recurrence theorem

Let {gt : Ω → Ω} is a �ow generated by a magnetic �eld B. For an (almost
arbitrary) point x ∈ R3 and for an arbitrary ε > 0, there exists a real t0 > 0,
t0 = t0(x, ε), such that dist(gt0(x), x) < ε.

Almost all trajectories of the magnetic �eld B are almost closed.

A non-formal de�nition of the helicity χ by means of asymptotic
Hopf invariant

χ =

∫ ∫
Λ(l1, l2)dΩdΩ,

where Ω is the spectrum (the space of all magnetic lines) of the �eld B,
l1, l2 ∈ Ω, Λ(l1, l2) = limT→+∞ Λ(T ;x1, x2), xi ∈ li, i = 1, 2.

A problem by V.I.Arnol'd

V.I.Arnol'd has formulated the following problem (1984-12):
”
To transform

an asymptotic ergodic de�nition of the Hopf invariant for a divergence-free
vector �eld to a theory by S.P.Novikov to generalize the Whitehead product
in homotopy group of spheres“.
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A strategy toward the problem by V.I.Arnol'd

1. To �nd-out a �nite-type invariant I, which satis�es Asymptotic and Sta-
bility properties.

2. To test an integral expression of I for asymptotic invariant of magnetic
�elds.

Example: Quadratic helicity χ(2) G4sm5

I(L1, L2, L3) =
1

3
[lk(L1, L2)lk(L2, L3)+lk(L2, L3)lk(L3, L1)+lk(L3, L1)lk(L1, L2)],

χ(2) =

∫ ∫ ∫
P (l1, l2, l3)dΩdΩdΩ,

P (l1, l2, l3) =
1

3
[Λ(l1, l2)Λ(l2, l3) + Λ(l2, l3)Λ(l3, l1) + Λ(l3, l1)Λ(l1, l2)],

l1, l2, l3 ∈ Ω.

Main result: a higher asymptotic invariant µ G12sm6

For m = 3 there exist an asymptotic invariant M of the degree 12, which is
not a function of pairwise linking numbers of components.

The invariant M is skew-symmetric, if at least 2 of the 3 linking numbers of
components are trivial then M = 0.

The upper µ and the lower µ asymptotic invariants of divergence-free vector
�elds with respect to volume preserved di�eomorphisms are well-de�ned.

In the case all trajectories of B are closed, we get: µB = µ
B
, which is asso-

ciated with M
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Proof of the Main result

The invariant M is �nite-type invariant. An integral formula of M is in

On a new integral formula for an invariant of 3-component oriented links,
Journal of Geometry and Physics, 53 (2005) 180-196 (by the author).

All the terms in this integral formula, applying for B, admit asymptotic
limits T → +∞ (lower and upper). In the case the trajectories of B are
closed the lower and the upper limits coincide.

Asymptotic combinatorial invariants

Two operations for framed oriented links

Let I be a �nite-type invariant of classical oriented m-component links in Rn

(a generalized Whitehead product). We shall give necessary conditions that
I is a (higher) asymptotic invariant.

Let (L, ξ) be an arbitrary m-component framed link. For an arbitrary
integer r ∈ Z let us de�ne a framed m-component link r(L, ξ), the compo-
nents of this link are de�ned by the replacement of the corresponding framed
component (Li, ξi) of the oriented framed link (L, ξ), i = 1, . . .m to the
component r(Li, ξi), which is the standard (r, 1)�time winding along Li.

Let (L, ξ;L0) be an arbitrary framed (m − 1)�component link with
a marked component L0 ⊂ L. Let us de�ne m�component framed link
(L, ξ;L0)↑. The (m − 2) components of the link (L, ξ) are transformed by
the identity. The marked framed component (L0, ξ0) of the link L is trans-
formed to the pair of parallel framed components (L↑0,1, ξ

↑
0,1;L↑0,2, ξ

↑
0,2), the

�rst component coincides with L0, the second is de�ned by a small shift of
the component L0 along the frame ξ0.

For a (m − 1)�component framed link (L, ξ;L0) with one marked com-
ponent and an integer r let us de�ne two framed m-component links:
r((L, ξ;L0)↑), (r(L, ξ;L0))↑.

5



Finite-type asymptotic invariants of oriented links

Let us say that a �nite-type invariant I for m-component links is an asymp-
totic invariant of the degree s (the degree of the invariant I is distinguished
from its order), if the following two equations are satis�ed:

Asymptotic property

I(r(L, ξ)) = rsI(L) + o(rs).

Stability property

I(r((L, ξ;L0)↑)) = I((r(L, ξ;L0))↑) + o(rs),

where o(rs) is a polynomial of r of the degree less then s, coe�cients of this
polynomial depend only on the isotopy class of the framed link (L, ξ).

Conway polynomial

for m�component link L:

∇L(z) = zm−1(c0 + c1z
2 + · · ·+ cnz

2n).

m = 2 c0(L) coincides with linking coe�cient lk(L1, L2).
m = 1 c1(L) is the Casson's invariants of knots.

2-component k-Hopf links L+
Hopf (k), L−Hopf (k)

The link L+
Hopf (4) = (L0, ξ0)↑, lk(L0, ξ0) = 4:
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Generalized Sato-Levine invariant

The simplest invariant of 2-component links, discovered by M.Polyak and
O.Viro (1994). This invariant is skew-symmetric, order 3.

Matveev S., Polyak M., A simple formula for the Casson-Walker invari-

ant, Journal of Knot Theory and Its Rami�cations, 18:6 (2009), 841�864;
arXiv:0811.0606.

The formula for the Generalized Sato-Levine

β(L) = c1(L)− c0(L)(c1(L1) + c1(L2))− P (L),

where

P (L) =
(k + 1)k(k − 1)

6
, c0(L) = k.

Ryo Nikkuni (2008), Homotopy on spatial graphs and Generalized Sato-

Levine Invariants, arXiv:0710.3627v2.

In the case c0(L) = 0 we get β(L) = c1(L) is the Sato-Levine invariant.

Relationship with Milnor's µ-invariants (Whitehead products)

Assume L = ((L0, ξ0), (L1, ξ1)), lk(L0, ξ0) = lk(L1, ξ1) = 0, lk(L0, L1) = 0.
The equation is satis�ed:

β(L) = µ1,1,2,2((L0, ξ0)↑, (L1, ξ1)↑).

Skein-relation for Generalized Sato-Levine invariant

For a homotopy of L1 (or on L2) with self-intersection point x the equation
is satis�ed:

β(L+)− β(L−) = O(x)lk(l+, L2)lk(l−, L2),

O(x) is the sign of the self-intersection point x, l+, l− are the loops on L1 (or
on L2).
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Skein relation for Casson invariant

For a ∆-move of L with we get:

C1(L+)− C1(L−) = St+ − St−,

where St+ (St−) is the strangeness (in the sense of V.I. Arnol'd) of the
projection of the knot L+ (L−) on the plane.

Generalized Sato-Levine invariant β and Casson invariant C1(L)

Let (L, ξ) be a framed knot. The following formula is satis�ed:

β((L, ξ)↑) = 2lk(L, ξ)C1(L). (1)

Normalization

β(L+
Hopf (k)) = 0, β(L−Hopf (k)) = −P (k).

Generalized Sato-Levine invariant is not an asymptotic invariant

The following equation is satis�ed:

I(r((L, ξ)↑)) = Ar4 + . . . , I((r(L, ξ))↑) = Br5 + . . . ,

where the coe�cients A,B depends only on L. If lk(L, ξ) = 0, B = 0.
Stability Property satis�es only in the case lk(L, ξ) = 0.

Proof: From Skein relation for the Generalized Sato-Levine invariant we get
s = 4. From the Skein relation for the Casson invariant and the formula (1)
we get s = 5.
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Melikhov's invariant

γ is symmetric order 4 invariant of 3 component links.

L = L1 ∪ L2 ∪ L3,

γ(L) = c1(L)−

((1, 2)(2, 3) + (2, 3)(3, 1) + (3, 1)(1, 2))(c1(L1) + c1(L2) + c1(L3))

−((3, 1) + (2, 3))(c1(L1 ∪ L2)− (1, 2)(c1(L1) + c1(L2)))

−((1, 2) + (3, 1))(c1(L2 ∪ L3)− (2, 3)(c1(L2) + c1(L3)))

−((2, 3) + (1, 2))(c1(L3 ∪ L1)− (3, 1)(c1(L3) + c1(L1))),

where (i, j) are the linking numbers k(Li ∪Lj) of the pair of components Li,
Lj, i, j = 1, 2, 3, i 6= j, of the link L is de�ned.

Invariant M̃

M̃(L) = (1, 2)(2, 3)(3, 1)γ(L)−

(1, 2)2(1, 3)2β(L2 ∪ L3) + (2, 3)2(2, 1)2β(L3 ∪ L1) + (2, 3)2(2, 1)2β(L3 ∪ L1).

Properties of M̃

1. M̃ is skew-symmetric order 7 invariant for 3-component oriented links,
which is not a function of the linking numbers of components.

2. If at least 2 of the 3 linking numbers (1, 2), (2, 3), (3, 1) are trivial, M̃ = 0.

3. A perturbation
r(L, ξ) 7→ (r(L, ξ))′

of a component of r(L, ξ) by means of an arbitrary r-strains braid keeps the
invariant M̃ , in particular M̃(r(L, ξ)) is independent of framings. (Remark:
The linking number lk(L1, L2) of components of two-component links satis�es
an analogous property.)
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Asymptotic invariant M

Assuming that (1, 2)(2, 3)(3, 1) 6= 0 de�ne the invariant M by the formula:

M(L) =
M̃((2, 3)L1, (3, 1)L2, (1, 2)L3))

(1, 2)4(2, 3)4(3, 1)4
+R((1, 2), (2, 3), (3, 1)),

where (L) = (L1, L2, L3), R((1, 2), (2, 3), (3, 1)) is a suitable polynomial (pro-
viding the normalization), which depends only on linking numbers of the
components.

Theorem

The invariant M is extended to a �nite-type invariant for 3-component links
without the assumption (1, 2)(2, 3)(3, 1) 6= 0. This is an asymptotic invariant
of the degree 12 with the normalization property:

M(L+
Hopf (k1, k2, k3)) = 0,

where L+
Hopf (k1, k2, k3) is the simplest 3-component link with the given pair-

wise linking numbers of components.

Quadratic magnetic helicity χ(2)

De�nition of χ(2)

Let B is a divergence-free vector �eld in D. De�ne Λ(2) by the formula:

Λ(2)(T ;x) =
1

T 2
(

∫ T

0

(ẋ(τ),A)dτ)2,

where x(τ) = gτ (x) is a trajectory of B issuing from x, ẋ(τ) = d
dτ
gτx = B(x)

is the corresponding vector of velocity. De�ne

χ(2) = lim sup
T→+∞

∫
Λ(2)(T ;x)dD.
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Quadratic magnetic helicity χ(2) is well-de�ned

By the Cauchy�Bunyakovsky�Schwarz inequality we get:

Λ(2)(T ;x) ≤ 1

T

∫
(ẋ(τ),A)2dτ.

Therefore∫
Λ(2)(T ;x)dD ≤ 1

T

∫ ∫
(ẋ(τ),A)2dτdD =

∫
(B,A)2dD.∫

Λ(2)(T ;x)dD ≤ δ(2),

where

δ(2) =

∫
(B,A)2dD.

Quadratic magnetic helicity χ(2) is an invariant

By the induction equation we get:

∂A

∂t
= v ×B− gradf,

where f is a function on U with a prescribed boundary conditions, which
satis�es the equation

∆f = div(v ×B).

The integral trajectory x(τ) of B is transformed into the trajectory
x′(τ) = x(τ) + dx(τ) = x(τ) + d(rot(v(x(τ))×B(x(τ)))).

In each point of x(τ) the following equations are satis�ed:

(
∂

∂t
+ Lv)A = gradf,

(
∂

∂t
+ Lv)B = 0,

where Lv is the Lee derivative along the vector �eld v, ẋ(τ) = B(x(τ)).
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The value Λ(2) is transformed by the following formula:

Λ(2)(T ;x) 7→ Λ(2)(T ;x)+

2

T 2
(

∫ T

0

(B(x(τ)),A(x(τ)))dτ)(

∫ T

0

(ẋ(τ), (
∂

∂t
+ Lv)A(x(τ))dτ +∫ T

0

((
∂

∂t
+ Lv)B(x(τ)),A(x(τ)))dτ).

Therefore,

Λ(2)(T ;x) 7→ Λ(2)(T ;x) +

∫ T

0

(B(x(τ)),gradf(x(τ)))dt.

To prove the invariance of χ(2) it is su�ciently to prove that the transforma-
tion ∫

Λ(2)(T ;x)dD 7→
∫

Λ(2)(T ;x)dD+

2

T 2
(

∫ ∫ T

0

(B(x(τ)),A(x(τ)))dtdD)(

∫ ∫ T

0

(B(x(τ)),gradf(x(τ)))dtdD)+

1

T 2
(

∫ ∫ T

0

(B(x(τ)),gradf(x(τ))dtdD)2

is the identity for T → +∞. By the Newton-Leibniz theorem we get:∫ T

0

(B(x(τ)),gradf(x(τ)))dD = f(x(o))− f(x(T )) ≤ C,

where C depends on f , and is not depend on T . Therefore,∫
Λ(2)(T ;x)dD 7→

∫
Λ(2)(T ;x)dD + T−1C1,

where C1 is bounded for T → +∞. Therefore we have:

lim sup
T→+∞

∫
Λ

(2)
B (T ;x)dD 7→ lim sup

T→+∞

∫
Λ(2)(T ;x)dD.

The integral χ(2) is an invariant with respect to volume-preserving di�eomor-
phisms.

Inequalities

δ(2) ≥ χ(2) ≥ χ2

V ol(D)
≥ 0.

All values in this inequalities have the dimension G4sm5.

12



Geometrical meaning of quadratic magnetic helicity χ(2)

Example 1

Assume that a magnetic �eld B is localized inside the only �at thin magnetic
tube U ⊂ D, all the trajectories of B are closed. This magnetic tube U is
characterized by the following parameters:

� Φ is the magnetic �ow trough the transversal cross-section of the tube,

� κ ∈ Z is the twisting coe�cient of trajectories along the central axis of
the tube (this twisting coe�cient is integer and equals to the linking number
of a pair of trajectories of B)

� L is a length of the central line of the magnetic tube,

�V ol is the volume of the magnetic tube.

The magnetic energy is given by the expression:

U = Φ2L,

The magnetic helicity is given by the expression:

χ = κΦ,

The quadratic magnetic helicity is given by the expression:

χ(2) =
κ2Φ2

V ol
.
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Let us consider the following limit (the thickness of the magnetic tube
tends to zero):

κ = const, Φ = const, L = const, V ol(L)→ 0.

Therefore the following equations are satis�ed:

U = const, χ = const, χ(2) → +∞.

Remark

For the given con�guration of tubes the quadratic magnetic helicity gives no
a lower bound of the magnetic energy.

Example 2

Assume that a magnetic �eld B is localized inside the pair of thin �at un-
twisted magnetic tubes U1 ∪ U2 ⊂ D, all the trajectories of B inside each
tubes are closed and unlinked. The following equation is satis�ed:

χ(2) = (V ol(L1) + V ol(L2))−1χ2.

Remark

For the given con�guration of tubes the quadratic magnetic helicity gives a
lower bound of the magnetic energy.
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Application to the induction equation

The following equation is called the induction equation. This equation de-
scribes the evolution of magnetic �eld in a conductive liquid medium, assum-
ing that the velocity �eld v of the medium is known:

∂B

∂t
= rot(v ×B) + αrotB− ηrotrotB. (2)

Remark

The second term in the right side provides a growth of a magnetic �eld,
this term is due to the helisity of the mean velocity �eld (the α-e�ect by
Steenbeck, Krause, R�adler (1966)), or by neutrino (by D.D.Sokolo� and
V.B.Semikoz (2004)). The third term in the right side provides a decrease of
the magnetic �eld, this term is due to the magnetic dissipation.

Note that the induction equation (2) is not invariant and is not skew-
invariant with respect to a mirror-symmetry. The magnetic energy is an in-
variant, the magnetic helicity is a skew-invariant with respect to a mirror
symmetry.

The following well-known equations are satis�ed:

dχ

dt
= −2η

∫
(B, rotB)dD + 2α

∫
(B,B)dD = −2ηχc + 2αU,

where χc is called the current helicity, U is the magnetic energy.

Theorem (χ(2) is a stable invariant)

Assuming the equation (2), the following inequalities are satis�ed:

d
√
χ(2)

dt
≤ η

√∫
(rotB,B)2dD + η

√∫
(rotrotB,A)2dD+

α

√∫
(B,B)2dD + α

√∫
(rotB,A)2dD+

η(

∫
(rotrotB, rotrotB)4dD)1/8(

∫
(A,A)2dD)1/4+

α(

∫
(rotB, rotB)4dD)1/8(

∫
(A,A)2dD)1/4,

where the right side of the equation is a limit of the corresponding di�erence
ratio.
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The inequality by V.I.Arnol'd

There exists a positive constant C > 0, which depends on the radius of the
ball D, such that the following inequality is satis�ed:

C−2U2(B) ≥ χ2(B).

This inequality can be proved by means of the Fourier expansion of the
magnetic �eld.

The expansion for magnetic �eld B is:

B =
∑
k

(c+
k + c−k )eßkx, (3)

where k is a number of a corresponding wave vector c±k .

Variations on the theme of the Arnol'd inequality

Assuming that the magnetic �eld is given by a power spectrum:

c±k = γ±k−
α
2 , α =

5

3
, c±k = |c±k |.

The expansion for the magnetic energy is:

E =
∑
k

c+
k c̄

+
k + c−k c̄

−
k =

∑
k

|c+
k |

2 + |c−k |
2.

The expansion for the magnetic helicity is:

χ =
∑
k

b+
k − b

−
k ,

where all coe�cients b±k are non-negative.
Then we get:

ck = |c+
k |

2 + |c−k |
2 = (γ+ + γ−)k−α,

bk = b+
k − b

−
k = (γ+ − γ−)k−α−1.
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The expansion for the square of the magnetic energy is

E2 =
∑
k

2(γ+ + γ−)2

α− 1
k−2α+1.

The expansion for the square of the magnetic helicity is:

χ2 =
∑
k

b
(2)
k ,

b
(2)
k =

2(γ+ − γ−)

α
k−2α−1.

The expansion for the correlation tensor of the quadratic magnetic helicity
is:

δ(2) =
∑
k

d
(2)
k .

This gives an upper bound for the quadratic magnetic helicity:

d
(2)
k ≤

γ+ + γ−

α2
k−2α.

This gives an intermediate Fourier spectrum for δ(2) (and therefor for the
quadratic helicity χ(2)) with respect to the spectra of U2 and χ2.
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