Canonical foliations of quasi-fuchsian manifolds

 (mostly a survey of some recent results) joint with K. KrasnovJean-Marc Schlenker
Institut de Mathématiques
Université Toulouse III
http://www.picard.ups-tlse.fr/~schlenker

September 7, 2005

Contents

We want to describe some positive and negative results on foliations of quasi-fuchsian hyperbolic mflds and their Lorentzian analogs (AdS, dS, Minkowski). Mostly due to other people.

Contents

We want to describe some positive and negative results on foliations of quasi-fuchsian hyperbolic mflds and their Lorentzian analogs (AdS, dS, Minkowski). Mostly due to other people.

- Explicit formulae for quasi-fuchsian metrics (V. Fock, ...).

Contents

We want to describe some positive and negative results on foliations of quasi-fuchsian hyperbolic mflds and their Lorentzian analogs (AdS, dS, Minkowski). Mostly due to other people.

- Explicit formulae for quasi-fuchsian metrics (V. Fock, ...).
- Parametrization of minimal surfaces in hyperbolic mflds (Taubes).

Contents

We want to describe some positive and negative results on foliations of quasi-fuchsian hyperbolic mflds and their Lorentzian analogs (AdS, dS, Minkowski). Mostly due to other people.

- Explicit formulae for quasi-fuchsian metrics (V. Fock, ...).
- Parametrization of minimal surfaces in hyperbolic mflds (Taubes).
- Existence and uniqueness of minimal surfaces in q-fuchsian mflds.

Contents

We want to describe some positive and negative results on foliations of quasi-fuchsian hyperbolic mflds and their Lorentzian analogs (AdS, dS, Minkowski). Mostly due to other people.

- Explicit formulae for quasi-fuchsian metrics (V. Fock, …).
- Parametrization of minimal surfaces in hyperbolic mflds (Taubes).
- Existence and uniqueness of minimal surfaces in q-fuchsian mflds.
- The (much simpler) AdS picture.

Contents

We want to describe some positive and negative results on foliations of quasi-fuchsian hyperbolic mflds and their Lorentzian analogs (AdS, dS, Minkowski). Mostly due to other people.

- Explicit formulae for quasi-fuchsian metrics (V. Fock, …).
- Parametrization of minimal surfaces in hyperbolic mflds (Taubes).
- Existence and uniqueness of minimal surfaces in q-fuchsian mflds.
- The (much simpler) AdS picture.
- Foliations by constant mean curvature surfaces (cf Anderson, Barbot, Zeghib).

Contents

We want to describe some positive and negative results on foliations of quasi-fuchsian hyperbolic mflds and their Lorentzian analogs (AdS, dS, Minkowski). Mostly due to other people.

- Explicit formulae for quasi-fuchsian metrics (V. Fock, …).
- Parametrization of minimal surfaces in hyperbolic mflds (Taubes).
- Existence and uniqueness of minimal surfaces in q-fuchsian mflds.
- The (much simpler) AdS picture.
- Foliations by constant mean curvature surfaces (cf Anderson, Barbot, Zeghib).
- Invariants of q-fuchsian mflds through minimal surfaces.

Contents

We want to describe some positive and negative results on foliations of quasi-fuchsian hyperbolic mflds and their Lorentzian analogs (AdS, dS, Minkowski). Mostly due to other people.

- Explicit formulae for quasi-fuchsian metrics (V. Fock, …).
- Parametrization of minimal surfaces in hyperbolic mflds (Taubes).
- Existence and uniqueness of minimal surfaces in q-fuchsian mflds.
- The (much simpler) AdS picture.
- Foliations by constant mean curvature surfaces (cf Anderson, Barbot, Zeghib).
- Invariants of q-fuchsian mflds through minimal surfaces.
- Is there any canonical foliation of q-fuchsian metrics ???

Quasi-fuchsian hyperbolic 3-mflds

Quasi-fuchsian hyperbolic 3-mflds are quotients of H^{3} by the π_{1} of a closed surface Σ of genus at least 2. Complete hyperbolic metrics.

Quasi-fuchsian hyperbolic 3-mflds

Quasi-fuchsian hyperbolic 3-mflds are quotients of H^{3} by the π_{1} of a closed surface Σ of genus at least 2. Complete hyperbolic metrics. Some important properties (definitions):

- Topologically $\Sigma \times R$, contain a compact subset K which is convex (any γ with endpoints in K is in K).

Quasi-fuchsian hyperbolic 3-mflds

Quasi-fuchsian hyperbolic 3-mflds are quotients of H^{3} by the π_{1} of a closed surface Σ of genus at least 2. Complete hyperbolic metrics. Some important properties (definitions):

- Topologically $\Sigma \times R$, contain a compact subset K which is convex (any γ with endpoints in K is in K).
- The limit set is a Jordan curve, and $\partial_{\infty} M$ is made of two copies of Σ.

Quasi-fuchsian hyperbolic 3-mflds

Quasi-fuchsian hyperbolic 3-mflds are quotients of H^{3} by the π_{1} of a closed surface Σ of genus at least 2. Complete hyperbolic metrics. Some important properties (definitions):

- Topologically $\Sigma \times R$, contain a compact subset K which is convex (any γ with endpoints in K is in K).
- The limit set is a Jordan curve, and $\partial_{\infty} M$ is made of two copies of Σ.
- The induced conformal structures at infinity uniquely determine M (Ahlfors, Bers).

Quasi-fuchsian hyperbolic 3-mflds

Quasi-fuchsian hyperbolic 3-mflds are quotients of H^{3} by the π_{1} of a closed surface Σ of genus at least 2. Complete hyperbolic metrics. Some important properties (definitions):

- Topologically $\Sigma \times R$, contain a compact subset K which is convex (any γ with endpoints in K is in K).
- The limit set is a Jordan curve, and $\partial_{\infty} M$ is made of two copies of Σ.
- The induced conformal structures at infinity uniquely determine M (Ahlfors, Bers).

AdS analogs: GHMC AdS 3-mflds (G. Mess).

Constant mean curvature foliations

Two descriptions of the Fock metric

Consider the following metric on $S \times \mathbb{R}$ (V. Fock):
$d s^{2}=d r^{2}+\left(e^{\phi} \cosh ^{2}(r)+t \bar{t} e^{-\phi} \sinh ^{2}(r)\right)|d z|^{2}+\left(t d z^{2}+\bar{t} d \bar{z}^{2}\right) \cosh (r) \sinh (r)$, with $\partial_{z} \partial_{\bar{z}} \phi=e^{\phi}+e^{-\phi} t \bar{t}$, where $t d z^{2}$ is a QHD.

Two descriptions of the Fock metric

Consider the following metric on $S \times \mathbb{R}$ (V. Fock):
$d s^{2}=d r^{2}+\left(e^{\phi} \cosh ^{2}(r)+t \bar{t} e^{-\phi} \sinh ^{2}(r)\right)|d z|^{2}+\left(t d z^{2}+\bar{t} d \bar{z}^{2}\right) \cosh (r) \sinh (r)$,
with $\partial_{z} \partial_{\bar{z}} \phi=e^{\phi}+e^{-\phi} \boldsymbol{t} \bar{t}$, where $t d z^{2}$ is a QHD.
It is hyperbolic, and is "often" quasi-fuchsian.

Two descriptions of the Fock metric

Consider the following metric on $S \times \mathbb{R}$ (V. Fock):
$d s^{2}=d r^{2}+\left(e^{\phi} \cosh ^{2}(r)+t \bar{t} e^{-\phi} \sinh ^{2}(r)\right)|d z|^{2}+\left(t d z^{2}+\bar{t} d \bar{z}^{2}\right) \cosh (r) \sinh (r)$,
with $\partial_{z} \partial_{\bar{z}} \phi=e^{\phi}+e^{-\phi} t \bar{t}$, where $t d z^{2}$ is a QHD.
It is hyperbolic, and is "often" quasi-fuchsian.
The induced metric on S_{0} is $I_{0}=e^{\phi}|d z|^{2}$, and $I_{0}=\operatorname{Re}\left(t d z^{2}\right)$.

Two descriptions of the Fock metric

Consider the following metric on $S \times \mathbb{R}$ (V. Fock):
$d s^{2}=d r^{2}+\left(e^{\phi} \cosh ^{2}(r)+t \bar{t} e^{-\phi} \sinh ^{2}(r)\right)|d z|^{2}+\left(t d z^{2}+\bar{t} d \bar{z}^{2}\right) \cosh (r) \sinh (r)$,
with $\partial_{z} \partial_{\bar{z}} \phi=e^{\phi}+e^{-\phi} t \bar{t}$, where $t d z^{2}$ is a QHD.
It is hyperbolic, and is "often" quasi-fuchsian.
The induced metric on S_{0} is $I_{0}=e^{\phi}|d z|^{2}$, and $I_{0}=\operatorname{Re}\left(t d z^{2}\right)$.
Thus S_{0} is a minimal surface, and the S_{r} are equidistant surfaces.

Two descriptions of the Fock metric

Consider the following metric on $S \times \mathbb{R}$ (V. Fock):
$d s^{2}=d r^{2}+\left(e^{\phi} \cosh ^{2}(r)+t \bar{t} e^{-\phi} \sinh ^{2}(r)\right)|d z|^{2}+\left(t d z^{2}+\bar{t} d \bar{z}^{2}\right) \cosh (r) \sinh (r)$,
with $\partial_{z} \partial_{\bar{z}} \phi=e^{\phi}+e^{-\phi} t \bar{t}$, where $t d z^{2}$ is a QHD.
It is hyperbolic, and is "often" quasi-fuchsian.
The induced metric on S_{0} is $I_{0}=e^{\phi}|d z|^{2}$, and $I_{0}=\operatorname{Re}\left(t d z^{2}\right)$.
Thus S_{0} is a minimal surface, and the S_{r} are equidistant surfaces. So it can be written also as:

$$
d r^{2}+I_{0}((\cosh (r) E+\sinh (r) B) \cdot(\cosh (r) E+\sinh (r) B) \cdot)
$$

where B is the shape operator of the minimal surface.

Explicit q-fuchsian metrics

Singularities

However, singularities can develop,

Singularities

However, singularities can develop, it happens iff the minimal surface has principal curvature $k>1$ at some points.

Singularities

However, singularities can develop, it happens iff the minimal surface has principal curvature $k>1$ at some points.
Proof: check when $\cosh (r) E+\sinh (r) B$ is singular.

Singularities

However, singularities can develop, it happens iff the minimal surface has principal curvature $k>1$ at some points.
Proof: check when $\cosh (r) E+\sinh (r) B$ is singular. NB: the metric can remain smooth.

Singularities

However, singularities can develop, it happens iff the minimal surface has principal curvature $k>1$ at some points.
Proof: check when $\cosh (r) E+\sinh (r) B$ is singular.
NB: the metric can remain smooth. When no singularity, yields "good" foliation, with conformal structures at infinity explicit known.

Singularities

However, singularities can develop, it happens iff the minimal surface has principal curvature $k>1$ at some points.
Proof: check when $\cosh (r) E+\sinh (r) B$ is singular.
NB: the metric can remain smooth. When no singularity, yields "good" foliation, with conformal structures at infinity explicit known. Questions:

Singularities

However, singularities can develop, it happens iff the minimal surface has principal curvature $k>1$ at some points.
Proof: check when $\cosh (r) E+\sinh (r) B$ is singular. NB: the metric can remain smooth. When no singularity, yields "good" foliation, with conformal structures at infinity explicit known. Questions:

- Can the principal curvature be larger than $1 a ̆$?

Singularities

However, singularities can develop, it happens iff the minimal surface has principal curvature $k>1$ at some points.
Proof: check when $\cosh (r) E+\sinh (r) B$ is singular. NB: the metric can remain smooth. When no singularity, yields "good" foliation, with conformal structures at infinity explicit known. Questions:

- Can the principal curvature be larger than 1 ă?
- Existence/uniqueness of minimal surfaces in q-fuchsian mflds ?

Singularities

However, singularities can develop, it happens iff the minimal surface has principal curvature $k>1$ at some points.
Proof: check when $\cosh (r) E+\sinh (r) B$ is singular. NB: the metric can remain smooth. When no singularity, yields "good" foliation, with conformal structures at infinity explicit known. Questions:

- Can the principal curvature be larger than lă?
- Existence/uniqueness of minimal surfaces in q-fuchsian mflds ?
- What about similar objects, e.g. GHMC AdS mflds ?

Singularities

However, singularities can develop, it happens iff the minimal surface has principal curvature $k>1$ at some points.
Proof: check when $\cosh (r) E+\sinh (r) B$ is singular. NB: the metric can remain smooth. When no singularity, yields "good" foliation, with conformal structures at infinity explicit known. Questions:

- Can the principal curvature be larger than lă?
- Existence/uniqueness of minimal surfaces in q-fuchsian mflds ?
- What about similar objects, e.g. GHMC AdS mflds ?

Note: q-fuchsian 3-mflds always contain a min surface, which is area minimizing.

Expression "from infinity"

A related expression "starts from infinity" (Skenderis-Solodukhin):

$$
d \rho^{2}+e^{2 \rho} g_{\infty}+2 g_{\infty}(b \cdot, \cdot)+e^{-2 \rho} g_{\infty}(b \cdot, b \cdot),
$$

Expression "from infinity"

A related expression "starts from infinity" (Skenderis-Solodukhin):

$$
d \rho^{2}+e^{2 \rho} g_{\infty}+2 g_{\infty}(b \cdot, \cdot)+e^{-2 \rho} g_{\infty}(b \cdot, b \cdot),
$$

where $d^{\nabla \infty} b=0$ (Codazzi) and $2 \operatorname{tr}(b)=-K_{\infty}$ (modified Gauss).

Expression "from infinity"

A related expression "starts from infinity" (Skenderis-Solodukhin):

$$
d \rho^{2}+e^{2 \rho} g_{\infty}+2 g_{\infty}(b \cdot, \cdot)+e^{-2 \rho} g_{\infty}(b \cdot, b \cdot),
$$

where $d^{\nabla \infty} b=0$ (Codazzi) and $2 \operatorname{tr}(b)=-K_{\infty}$ (modified Gauss). Singularities occur iff b has a negative eigenvalue.

Expression "from infinity"

A related expression "starts from infinity" (Skenderis-Solodukhin):

$$
d \rho^{2}+e^{2 \rho} g_{\infty}+2 g_{\infty}(b \cdot, \cdot)+e^{-2 \rho} g_{\infty}(b \cdot, b \cdot),
$$

where $d^{\nabla \infty} b=0$ (Codazzi) and $2 \operatorname{tr}(b)=-K_{\infty}$ (modified Gauss).
Singularities occur iff b has a negative eigenvalue.
Proof: write the metric as:

$$
d \rho^{2}+g_{\infty}\left(\left(e^{\rho} E+e^{-\rho} b\right) \cdot\left(e^{\rho} E+e^{-\rho} b\right) \cdot\right)
$$

Expression "from infinity"

A related expression "starts from infinity" (Skenderis-Solodukhin):

$$
d \rho^{2}+e^{2 \rho} g_{\infty}+2 g_{\infty}(b \cdot, \cdot)+e^{-2 \rho} g_{\infty}(b \cdot, b \cdot),
$$

where $d^{\nabla \infty} b=0$ (Codazzi) and $2 \operatorname{tr}(b)=-K_{\infty}$ (modified Gauss).
Singularities occur iff b has a negative eigenvalue.
Proof: write the metric as:

$$
d \rho^{2}+g_{\infty}\left(\left(e^{\rho} E+e^{-\rho} b\right) \cdot,\left(e^{\rho} E+e^{-\rho} b\right) \cdot\right)
$$

Geometric interpretation: corresponds to isometric embedding of g_{∞} in the space of horospheres of H^{3}, which is degenerate.

Expression "from infinity"

A related expression "starts from infinity" (Skenderis-Solodukhin):

$$
d \rho^{2}+e^{2 \rho} g_{\infty}+2 g_{\infty}(b \cdot, \cdot)+e^{-2 \rho} g_{\infty}(b \cdot, b \cdot),
$$

where $d^{\nabla \infty} b=0$ (Codazzi) and $2 \operatorname{tr}(b)=-K_{\infty}$ (modified Gauss).
Singularities occur iff b has a negative eigenvalue.
Proof: write the metric as:

$$
d \rho^{2}+g_{\infty}\left(\left(e^{\rho} E+e^{-\rho} b\right) \cdot,\left(e^{\rho} E+e^{-\rho} b\right) \cdot\right)
$$

Geometric interpretation: corresponds to isometric embedding of g_{∞} in the space of horospheres of H^{3}, which is degenerate.
The shape operator B^{*} satisfies the Codazzi equation and a modified Gauss equation: $K_{\infty}=1-\operatorname{tr}\left(B^{*}\right)$.

Expression "from infinity"

A related expression "starts from infinity" (Skenderis-Solodukhin):

$$
d \rho^{2}+e^{2 \rho} g_{\infty}+2 g_{\infty}(b \cdot, \cdot)+e^{-2 \rho} g_{\infty}(b \cdot, b \cdot),
$$

where $d^{\nabla \infty} b=0$ (Codazzi) and $2 \operatorname{tr}(b)=-K_{\infty}$ (modified Gauss).
Singularities occur iff b has a negative eigenvalue.
Proof: write the metric as:

$$
d \rho^{2}+g_{\infty}\left(\left(e^{\rho} E+e^{-\rho} b\right) \cdot,\left(e^{\rho} E+e^{-\rho} b\right) \cdot\right)
$$

Geometric interpretation: corresponds to isometric embedding of g_{∞} in the space of horospheres of H^{3}, which is degenerate.
The shape operator B^{*} satisfies the Codazzi equation and a modified Gauss equation: $K_{\infty}=1-\operatorname{tr}\left(B^{*}\right)$. Then set $b:=2 B^{*}-1$.

Expression "from infinity"

A related expression "starts from infinity" (Skenderis-Solodukhin):

$$
d \rho^{2}+e^{2 \rho} g_{\infty}+2 g_{\infty}(b \cdot, \cdot)+e^{-2 \rho} g_{\infty}(b \cdot, b \cdot),
$$

where $d^{\nabla \infty} b=0$ (Codazzi) and $2 \operatorname{tr}(b)=-K_{\infty}$ (modified Gauss).
Singularities occur iff b has a negative eigenvalue.
Proof: write the metric as:

$$
d \rho^{2}+g_{\infty}\left(\left(e^{\rho} E+e^{-\rho} b\right) \cdot,\left(e^{\rho} E+e^{-\rho} b\right) \cdot\right)
$$

Geometric interpretation: corresponds to isometric embedding of g_{∞} in the space of horospheres of H^{3}, which is degenerate.
The shape operator B^{*} satisfies the Codazzi equation and a modified Gauss equation: $K_{\infty}=1-\operatorname{tr}\left(B^{*}\right)$. Then set $b:=2 B^{*}-1$. There is also an expression in terms of conformal structure and QHD.

Minimal surfaces and Teichmüller space

Let S be a surface with a metric g and a bilinear symmetric form h. Then:

Minimal surfaces and Teichmüller space

Let S be a surface with a metric g and a bilinear symmetric form h. Then:
(1) $\operatorname{tr}_{[g]}(h)=0$ iff $h=\operatorname{Re}(q)$ for a quadratic differential q.

Minimal surfaces and Teichmüller space

Let S be a surface with a metric g and a bilinear symmetric form h. Then:
(1) $\operatorname{tr}_{[g]}(h)=0$ iff $h=\operatorname{Re}(q)$ for a quadratic differential q.
(2) then h satisfies the Codazzi equation with respect to $[g]$ iff q is holomorphic.

Minimal surfaces and Teichmüller space

Let S be a surface with a metric g and a bilinear symmetric form h. Then:
(1) $\operatorname{tr}_{[g]}(h)=0$ iff $h=\operatorname{Re}(q)$ for a quadratic differential q.
(2) then h satisfies the Codazzi equation with respect to $[g]$ iff q is holomorphic.
(3) and then $(g, h)=(I, I I)$ for a minimal surface iff $K=-1+\operatorname{det}_{g} h$ (Gauss equation).

Minimal surfaces and Teichmüller space

Let S be a surface with a metric g and a bilinear symmetric form h. Then:
(1) $\operatorname{tr}_{[g]}(h)=0$ iff $h=\operatorname{Re}(q)$ for a quadratic differential q.
(2) then h satisfies the Codazzi equation with respect to $[g]$ iff q is holomorphic.
(3) and then $(g, h)=(I, I I)$ for a minimal surface iff $K=-1+\operatorname{det}_{g} h$ (Gauss equation).
For fixed g, set $g^{\prime}=e^{2 u} g$.

Minimal surfaces and Teichmüller space

Let S be a surface with a metric g and a bilinear symmetric form h. Then:
(1) $\operatorname{tr}_{[g]}(h)=0$ iff $h=\operatorname{Re}(q)$ for a quadratic differential q.
(2) then h satisfies the Codazzi equation with respect to $[g]$ iff q is holomorphic.
(3) and then $(g, h)=(I, I I)$ for a minimal surface iff $K=-1+\operatorname{det}_{g} h$ (Gauss equation).
For fixed g, set $g^{\prime}=e^{2 u} g$. Then $K^{\prime}=e^{-2 u}(\Delta u+K)$,

Minimal surfaces and Teichmüller space

Let S be a surface with a metric g and a bilinear symmetric form h. Then:
(1) $\operatorname{tr}_{[g]}(h)=0$ iff $h=\operatorname{Re}(q)$ for a quadratic differential q.
(2) then h satisfies the Codazzi equation with respect to $[g]$ iff q is holomorphic.
(3) and then $(g, h)=(I, I I)$ for a minimal surface iff $K=-1+\operatorname{det}_{g} h$ (Gauss equation).
For fixed g, set $g^{\prime}=e^{2 u} g$. Then $K^{\prime}=e^{-2 u}(\Delta u+K)$, while $\operatorname{det}_{g^{\prime}} h=e^{-4 u} \operatorname{det}_{g} h$.

Minimal surfaces and Teichmüller space

Let S be a surface with a metric g and a bilinear symmetric form h. Then:
(1) $\operatorname{tr}_{[g]}(h)=0$ iff $h=\operatorname{Re}(q)$ for a quadratic differential q.
(2) then h satisfies the Codazzi equation with respect to $[g]$ iff q is holomorphic.
(3) and then $(g, h)=(I, I I)$ for a minimal surface iff $K=-1+\operatorname{det}_{g} h$ (Gauss equation).
For fixed g, set $g^{\prime}=e^{2 u} g$. Then $K^{\prime}=e^{-2 u}(\Delta u+K)$, while $\operatorname{det}_{g^{\prime}} h=e^{-4 u} \operatorname{det}_{g} h$. So condition (3) for g^{\prime} is:

$$
\begin{equation*}
\Delta u=-e^{2 u}-K_{0}+e^{-2 u} \operatorname{det}_{g} h . \tag{1}
\end{equation*}
$$

Minimal surfaces and Teichmüller space

Let S be a surface with a metric g and a bilinear symmetric form h. Then:
(1) $\operatorname{tr}_{[g]}(h)=0$ iff $h=\operatorname{Re}(q)$ for a quadratic differential q.
(2) then h satisfies the Codazzi equation with respect to $[g]$ iff q is holomorphic.
(3) and then $(g, h)=(I, I I)$ for a minimal surface iff $K=-1+\operatorname{det}_{g} h$ (Gauss equation).
For fixed g, set $g^{\prime}=e^{2 u} g$. Then $K^{\prime}=e^{-2 u}(\Delta u+K)$, while $\operatorname{det}_{g^{\prime}} h=e^{-4 u} \operatorname{det}_{g} h$. So condition (3) for g^{\prime} is:

$$
\begin{equation*}
\Delta u=-e^{2 u}-K_{0}+e^{-2 u} \operatorname{det}_{g} h . \tag{1}
\end{equation*}
$$

So a minimal surface defines a conformal structure and a QHD, i.e. an element of $T^{*} \mathcal{T}_{g}$.

Minimal surfaces and Teichmüller space

Let S be a surface with a metric g and a bilinear symmetric form h. Then:
(1) $\operatorname{tr}_{[g]}(h)=0$ iff $h=\operatorname{Re}(q)$ for a quadratic differential q.
(2) then h satisfies the Codazzi equation with respect to $[g]$ iff q is holomorphic.
(3) and then $(g, h)=(I, I I)$ for a minimal surface iff $K=-1+\operatorname{det}_{g} h$ (Gauss equation).
For fixed g, set $g^{\prime}=e^{2 u} g$. Then $K^{\prime}=e^{-2 u}(\Delta u+K)$, while $\operatorname{det}_{g^{\prime}} h=e^{-4 u} \operatorname{det}_{g} h$. So condition (3) for g^{\prime} is:

$$
\begin{equation*}
\Delta u=-e^{2 u}-K_{0}+e^{-2 u} \operatorname{det}_{g} h . \tag{1}
\end{equation*}
$$

So a minimal surface defines a conformal structure and a QHD, i.e. an element of $T^{*} \mathcal{T}_{g}$. Conversely: depends on whether (1) has a solution.

Critical points

THM (Taubes): the map ϕ from "min germs" to $T^{*} \mathcal{T}_{g}$ is singular exactly when there exists $u: S \rightarrow \mathbb{R}$ such that:

$$
\Delta u+2\left(1-k^{2}\right) u=0,
$$

Critical points

THM (Taubes): the map ϕ from " \min germs" to $T^{*} \mathcal{T}_{g}$ is singular exactly when there exists $u: S \rightarrow \mathbb{R}$ such that:

$$
\Delta u+2\left(1-k^{2}\right) u=0
$$

i.e. exactly when the area functional is degenerate, since its Hessian on normal deformations is:

$$
\int_{S}\|d u\|^{2}+2\left(1-k^{2}\right) u^{2} d a_{l}
$$

Critical points

THM (Taubes): the map ϕ from "min germs" to $T^{*} \mathcal{T}_{g}$ is singular exactly when there exists $u: S \rightarrow \mathbb{R}$ such that:

$$
\Delta u+2\left(1-k^{2}\right) u=0,
$$

i.e. exactly when the area functional is degenerate, since its Hessian on normal deformations is:

$$
\int_{S}\|d u\|^{2}+2\left(1-k^{2}\right) u^{2} d a_{l}
$$

So no critical point as long as $k<1$.

Critical points

THM (Taubes): the map ϕ from "min germs" to $T^{*} \mathcal{T}_{g}$ is singular exactly when there exists $u: S \rightarrow \mathbb{R}$ such that:

$$
\Delta u+2\left(1-k^{2}\right) u=0,
$$

i.e. exactly when the area functional is degenerate, since its Hessian on normal deformations is:

$$
\int_{S}\|d u\|^{2}+2\left(1-k^{2}\right) u^{2} d a_{l}
$$

So no critical point as long as $k<1$.
The proof follows by linearization of (1).

Critical points

THM (Taubes): the map ϕ from "min germs" to $T^{*} \mathcal{T}_{g}$ is singular exactly when there exists $u: S \rightarrow \mathbb{R}$ such that:

$$
\Delta u+2\left(1-k^{2}\right) u=0,
$$

i.e. exactly when the area functional is degenerate, since its Hessian on normal deformations is:

$$
\int_{S}\|d u\|^{2}+2\left(1-k^{2}\right) u^{2} d a_{l}
$$

So no critical point as long as $k<1$.
The proof follows by linearization of (1).
There is also a map ψ from "minimal germs" to representations.

Critical points

THM (Taubes): the map ϕ from "min germs" to $T^{*} \mathcal{T}_{g}$ is singular exactly when there exists $u: S \rightarrow \mathbb{R}$ such that:

$$
\Delta u+2\left(1-k^{2}\right) u=0,
$$

i.e. exactly when the area functional is degenerate, since its Hessian on normal deformations is:

$$
\int_{S}\|d u\|^{2}+2\left(1-k^{2}\right) u^{2} d a_{l}
$$

So no critical point as long as $k<1$.
The proof follows by linearization of (1).
There is also a map ψ from "minimal germs" to representations.
THM (Taubes): ψ has the same critical points as ϕ.

Critical points

THM (Taubes): the map ϕ from "min germs" to $T^{*} \mathcal{T}_{g}$ is singular exactly when there exists $u: S \rightarrow \mathbb{R}$ such that:

$$
\Delta u+2\left(1-k^{2}\right) u=0,
$$

i.e. exactly when the area functional is degenerate, since its Hessian on normal deformations is:

$$
\int_{S}\|d u\|^{2}+2\left(1-k^{2}\right) u^{2} d a_{l}
$$

So no critical point as long as $k<1$.
The proof follows by linearization of (1).
There is also a map ψ from "minimal germs" to representations.
THM (Taubes): ψ has the same critical points as ϕ.
Proof: clear from the Hessian of the area functional.

Critical points

THM (Taubes): the map ϕ from "min germs" to $T^{*} \mathcal{T}_{g}$ is singular exactly when there exists $u: S \rightarrow \mathbb{R}$ such that:

$$
\Delta u+2\left(1-k^{2}\right) u=0,
$$

i.e. exactly when the area functional is degenerate, since its Hessian on normal deformations is:

$$
\int_{S}\|d u\|^{2}+2\left(1-k^{2}\right) u^{2} d a_{l}
$$

So no critical point as long as $k<1$.
The proof follows by linearization of (1).
There is also a map ψ from "minimal germs" to representations. THM (Taubes): ψ has the same critical points as ϕ.
Proof: clear from the Hessian of the area functional.
But no geometric explanation. Moreover (Taubes) the degenerate directions are not the same.

When $k<1$

Suppose M is a q-fuchsian 3 -mfld, with a minimal surface S with $k<1$.

When $k<1$

Suppose M is a q-fuchsian 3 -mfld, with a minimal surface S with $k<1$. Then there is no other min S^{\prime} surface homotopic to S.

When $k<1$

Suppose M is a q-fuchsian 3 -mfld, with a minimal surface S with $k<1$. Then there is no other min S^{\prime} surface homotopic to S. Otherwise S^{\prime} would be "interior tangent" to S_{r} for some r, but mean curvature makes it impossible.

When $k<1$

Suppose M is a q-fuchsian 3 -mfld, with a minimal surface S with $k<1$. Then there is no other min S^{\prime} surface homotopic to S. Otherwise S^{\prime} would be "interior tangent" to S_{r} for some r, but mean curvature makes it impossible.
So M has a canonical foliation by the S_{r}.

When $k<1$

Suppose M is a q-fuchsian 3 -mfld, with a minimal surface S with $k<1$. Then there is no other min S^{\prime} surface homotopic to S. Otherwise S^{\prime} would be "interior tangent" to S_{r} for some r, but mean curvature makes it impossible.
So M has a canonical foliation by the S_{r}.
THM (B. Andrews): any surface with $k<1$ can be deformed to a minimal surface with $k<1$.

When $k>1$?

It seems that there are q-fuchsian 3 -mflds with no min surface with $k<1$.

When $k>1$?

It seems that there are q-fuchsian 3 -mflds with no min surface with $k<1$.
Uses the existence of hyperbolic 3 -mfld N which fibers over S^{1}, with no foliation by min surfaces (Hass-Thurston, Rubinstein ?).

When $k>1$?

It seems that there are q-fuchsian 3 -mflds with no min surface with $k<1$.
Uses the existence of hyperbolic 3 -mfld N which fibers over S^{1}, with no foliation by min surfaces (Hass-Thurston, Rubinstein ?). (Argument uses "drilling" of geodesic and Dehn filling.)

When $k>1$?

It seems that there are q-fuchsian 3 -mflds with no min surface with $k<1$.
Uses the existence of hyperbolic 3 -mfld N which fibers over S^{1}, with no foliation by min surfaces (Hass-Thurston, Rubinstein ?). (Argument uses "drilling" of geodesic and Dehn filling.)
The infinite cyclic cover \bar{N} of N is a limit of q-fuchsian 3-mflds M_{p}.

When $k>1$?

It seems that there are q-fuchsian 3 -mflds with no min surface with $k<1$.
Uses the existence of hyperbolic 3 -mfld N which fibers over S^{1}, with no foliation by min surfaces (Hass-Thurston, Rubinstein ?). (Argument uses "drilling" of geodesic and Dehn filling.)
The infinite cyclic cover \bar{N} of N is a limit of q-fuchsian 3-mflds M_{p}. As $p \rightarrow \infty, M_{p}$ contains many local minima of the area.

When $k>1$?

It seems that there are q-fuchsian 3 -mflds with no min surface with $k<1$.
Uses the existence of hyperbolic 3 -mfld N which fibers over S^{1}, with no foliation by min surfaces (Hass-Thurston, Rubinstein ?). (Argument uses "drilling" of geodesic and Dehn filling.)
The infinite cyclic cover \bar{N} of N is a limit of q-fuchsian 3-mflds M_{p}. As $p \rightarrow \infty, M_{p}$ contains many local minima of the area. None of those surfaces can have $k<1$, otherwise uniqueness.

When $k>1$?

It seems that there are q-fuchsian 3 -mflds with no min surface with $k<1$.
Uses the existence of hyperbolic 3 -mfld N which fibers over S^{1}, with no foliation by min surfaces (Hass-Thurston, Rubinstein ?). (Argument uses "drilling" of geodesic and Dehn filling.)
The infinite cyclic cover \bar{N} of N is a limit of q-fuchsian 3-mflds M_{p}. As $p \rightarrow \infty, M_{p}$ contains many local minima of the area. None of those surfaces can have $k<1$, otherwise uniqueness. It also follows that for some q-fuchsian mflds the foliation by equidistants from a minimal surface does not even cover the convex core.

The max principal curvature as an invariant of q-fuchsian mflds

For M q-fuchsian, let $k_{M}(M)$ be the sup of the principal curvatures of the min surfaces in M.

The max principal curvature as an invariant of q-fuchsian mflds

For M q-fuchsian, let $k_{M}(M)$ be the sup of the principal curvatures of the min surfaces in M. Then $k_{M}(M)=0$ iff M is fuchsian.

The max principal curvature as an invariant of q-fuchsian mflds

For M q-fuchsian, let $k_{M}(M)$ be the sup of the principal curvatures of the min surfaces in M. Then $k_{M}(M)=0$ iff M is fuchsian.
It bounds the volume of the convex core:

$$
V(C C(M)) \leq 4 \pi(g-1) \operatorname{argtanh}\left(k_{M}\right)+2(A-2 \pi(g-1)) \frac{k_{M}}{1-k_{M}^{2}}
$$

The max principal curvature as an invariant of q-fuchsian mflds

For M q-fuchsian, let $k_{M}(M)$ be the sup of the principal curvatures of the min surfaces in M. Then $k_{M}(M)=0$ iff M is fuchsian.
It bounds the volume of the convex core:

$$
V(C C(M)) \leq 4 \pi(g-1) \operatorname{argtanh}\left(k_{M}\right)+2(A-2 \pi(g-1)) \frac{k_{M}}{1-k_{M}^{2}} .
$$

k_{M} can be also be used to bound the Hausdorff dim of the limit set of M (also follows from the bound on the volume and results of Brock.

The max principal curvature as an invariant of q-fuchsian mflds

For M q-fuchsian, let $k_{M}(M)$ be the sup of the principal curvatures of the min surfaces in M. Then $k_{M}(M)=0$ iff M is fuchsian.
It bounds the volume of the convex core:

$$
V(C C(M)) \leq 4 \pi(g-1) \operatorname{argtanh}\left(k_{M}\right)+2(A-2 \pi(g-1)) \frac{k_{M}}{1-k_{M}^{2}} .
$$

k_{M} can be also be used to bound the Hausdorff dim of the limit set of M (also follows from the bound on the volume and results of Brock. Inequalities in the other directions ??

Constant mean curvature foliations

The AdS case

Everything becomes simple!

The AdS case

Everything becomes simple!

THM: there is a natural homeo from $T^{*} \mathcal{T}_{g}$ to the "germs of max surfaces" in $A d S^{3}$.

The AdS case

Everything becomes simple!

THM: there is a natural homeo from $T^{*} \mathcal{T}_{g}$ to the "germs of max surfaces" in $A d S^{3}$.
"Proof": let $(g, h) \in T^{*} \mathcal{T}_{g}$,

The AdS case

Everything becomes simple!

THM: there is a natural homeo from $T^{*} \mathcal{T}_{g}$ to the "germs of max surfaces" in $A d S^{3}$.
"Proof": let $(g, h) \in T^{*} \mathcal{T}_{g}$, i.e. $\operatorname{tr}_{g} h=0$ and $d^{\nabla} h=0$.

The AdS case

Everything becomes simple!
THM: there is a natural homeo from $T^{*} \mathcal{T}_{g}$ to the "germs of max surfaces" in $A d S^{3}$.
"Proof": let $(g, h) \in T^{*} \mathcal{T}_{g}$, i.e. $\operatorname{trg}_{g} h=0$ and $d^{\nabla} h=0$. Defines a max surface iff $-1-\operatorname{det}_{g} h=K$.

The AdS case

Everything becomes simple!
THM: there is a natural homeo from $T^{*} \mathcal{T}_{g}$ to the "germs of max surfaces" in $A d S^{3}$.
"Proof": let $(g, h) \in T^{*} \mathcal{T}_{g}$, i.e. $\operatorname{trg}_{g} h=0$ and $d^{\nabla} h=0$. Defines a max surface iff $-1-\operatorname{det}_{g} h=K$.
Set $g^{\prime}=e^{2 u}$, this equation on u becomes:

$$
\Delta u=-e^{2 u}-K-e^{-2 u} \operatorname{det}_{g} h
$$

The AdS case

Everything becomes simple!
THM: there is a natural homeo from $T^{*} \mathcal{T}_{g}$ to the "germs of max surfaces" in $A d S^{3}$.
"Proof": let $(g, h) \in T^{*} \mathcal{T}_{g}$, i.e. $\operatorname{trg}_{g} h=0$ and $d^{\nabla} h=0$. Defines a \max surface iff $-1-\operatorname{det}_{g} h=K$.
Set $g^{\prime}=e^{2 u}$, this equation on u becomes:

$$
\Delta u=-e^{2 u}-K-e^{-2 u} \operatorname{det}_{g} h .
$$

Sols correspond to critical points of:

$$
F(u)=\int\|d u\|^{2}+e^{2 u}+2 K u-e^{-2 u} \operatorname{det}_{g} h,
$$

The AdS case

Everything becomes simple!
THM: there is a natural homeo from $T^{*} \mathcal{T}_{g}$ to the "germs of max surfaces" in $A d S^{3}$.
"Proof": let $(g, h) \in T^{*} \mathcal{T}_{g}$, i.e. $\operatorname{trg}_{g} h=0$ and $d^{\nabla} h=0$. Defines a \max surface iff $-1-\operatorname{det}_{g} h=K$.
Set $g^{\prime}=e^{2 u}$, this equation on u becomes:

$$
\Delta u=-e^{2 u}-K-e^{-2 u} \operatorname{det}_{g} h .
$$

Sols correspond to critical points of:

$$
F(u)=\int\|d u\|^{2}+e^{2 u}+2 K u-e^{-2 u} \operatorname{det}_{g} h,
$$

which is str. convex because $\operatorname{det}_{g} h \leq 0$.

The AdS case (continued)

Rk: any germ of max surface defines a max surface in a GHMC AdS mfld (Mess).

The AdS case (continued)

Rk: any germ of max surface defines a max surface in a GHMC AdS mfld (Mess).
Rk: any GHMC AdS mfld contains a max surface (ref ?),

The AdS case (continued)

Rk: any germ of max surface defines a max surface in a GHMC AdS mfld (Mess).
Rk: any GHMC AdS mfld contains a max surface (ref ?), and moreover it is unique

The AdS case (continued)

Rk: any germ of max surface defines a max surface in a GHMC AdS mfld (Mess).
Rk: any GHMC AdS mfld contains a max surface (ref ?), and moreover it is unique (follows from foliation by CMC surface, of talks by Zeghib/Barbot.)

The AdS case (continued)

Rk: any germ of max surface defines a max surface in a GHMC AdS mfld (Mess).
Rk: any GHMC AdS mfld contains a max surface (ref ?), and moreover it is unique (follows from foliation by CMC surface, of talks by Zeghib/Barbot.)
So: $T^{*} \mathcal{I}_{g}=$ germs of max surfaces in AdS $=$ GHMC AdS mflds.

The AdS case (continued)

Rk: any germ of max surface defines a max surface in a GHMC AdS mfld (Mess).
Rk: any GHMC AdS mfld contains a max surface (ref ?), and moreover it is unique (follows from foliation by CMC surface, of talks by Zeghib/Barbot.)
So: $T^{*} \mathcal{I}_{g}=$ germs of max surfaces in AdS = GHMC AdS mflds. Provides limited Wick rotation: from "good"' q-fuchsian mflds to GHMC AdS mflds.

CMC foliation of AdS and Minkowski mflds

THM (cf talks by Barbot, Zeghib): any GHMC AdS mfld has a foliation by CMC surfaces. Moreover, the mean curvature is monotonous.

CMC foliation of AdS and Minkowski mflds

THM (cf talks by Barbot, Zeghib): any GHMC AdS mfld has a foliation by CMC surfaces. Moreover, the mean curvature is monotonous. COR: GHMC AdS mflds contain a unique minimal surface (argument: tangency points with surfaces in the foliation).

CMC foliation of AdS and Minkowski mflds

THM (cf talks by Barbot, Zeghib): any GHMC AdS mfld has a foliation by CMC surfaces. Moreover, the mean curvature is monotonous. COR: GHMC AdS mflds contain a unique minimal surface (argument: tangency points with surfaces in the foliation).
The CMC foliations also exist for "similar" Minkowski mflds.

CMC foliation of AdS and Minkowski mflds

THM (cf talks by Barbot, Zeghib): any GHMC AdS mfld has a foliation by CMC surfaces. Moreover, the mean curvature is monotonous. COR: GHMC AdS mflds contain a unique minimal surface (argument: tangency points with surfaces in the foliation).
The CMC foliations also exist for "similar" Minkowski mflds.
What about hyperbolic 3-mflds ?

Constant mean curvature foliations

CMC foliation of hyperbolic ends

THM (Labourie): the ends of q-fuchsian hyperbolic mflds have a foliation by constant Gauss surfaces, with monotonous Gauss curvature.

CMC foliation of hyperbolic ends

THM (Labourie): the ends of q-fuchsian hyperbolic mflds have a foliation by constant Gauss surfaces, with monotonous Gauss curvature. COR: the minimal surfaces remain in the convex core.

CMC foliation of hyperbolic ends

THM (Labourie): the ends of q-fuchsian hyperbolic mflds have a foliation by constant Gauss surfaces, with monotonous Gauss curvature. COR: the minimal surfaces remain in the convex core. Also yields a foliation for the dS mflds obtained by duality (quotients of max convex subset of dS by surfaces groups, etc) by constant Gauss curvature surfaces.

CMC foliation of hyperbolic ends

THM (Labourie): the ends of q-fuchsian hyperbolic mflds have a foliation by constant Gauss surfaces, with monotonous Gauss curvature. COR: the minimal surfaces remain in the convex core.
Also yields a foliation for the dS mflds obtained by duality (quotients of max convex subset of $\mathrm{d} S$ by surfaces groups, etc) by constant Gauss curvature surfaces.
However neither the equidistant foliation from a min surface nor the CMC foliation provides (yet ?) a nice canonical foliation of q-fuchsian mflds.

