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Let me start with some by now well-known facts. It is not clear (at least
to me) exactly when the story of nonlocal perimeters started.
Therefore, I will not attempt to assign a maternity to this concept, but
rather I will bluntly introduce it:

Let E ⊂ Rn be a measurable set having finite measure. Then, for every
0 < s < 1 the (nonlocal) s-perimeter of E is defined by

Ps(E ) = [1E ]22,s ,

where for any p ≥ 1 and s ∈ (0, 1), I have denoted by

[f ]p,s =

(∫
Rn

∫
Rn

|f (x)− f (y)|p

|x − y |n+ps
dxdy

)1/p

,

the classical Aronszajn-Gagliardo-Slobedetzky seminorm of f .
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Once this notion is introduced, one immediately realises that the range of
possible s must be restricted. In fact, it is well-known that any non-empty
bounded open set E has infinite s-perimeter as soon as 1

2 ≤ s < 1! For
instance, when E = B = {x ∈ Rn | |x | < 1}, then one can show that
Ps(B) <∞ if and only if 1

2 ≤ s < 1, and in such range one has in fact

Ps(B) =
nπnΓ(1− 2s)

sΓ(n2 + 1)Γ(1− s)Γ(n+2−2s
2 )

.

Since the gamma function has a simple pole with residue 1 in z = 0, it is
clear from this formula that s → Ps(B) has a simple pole in s = 1

2 (and
also in s = 0), and that moreover one has the limiting relation

lim
s→( 1

2
)−

(1− 2s)Ps(B) =
2π

n−1
2

Γ(n+1
2 )

P(B),

where I have denoted by P(B) = 2π
n
2

Γ( n
2

) the standard perimeter of B.
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The Bourgain-Brezis-Mironescu-Dávila theorem

The previous observation is a special case of a result of J. Dávila. In
answer to a question posed in the celebrated paper of Bourgain, Brezis
and Mironescu, he extended to any dimension their limiting formula for
n = 1, and proved

lim
s↗1/2

(1− 2s)Ps(E ) =

(∫
Sn−1

| < en, ω > |dσ(ω)

)
P(E ),

where en = (0, ..., 0, 1), and P(E ) indicates the perimeter of E according
to De Giorgi.

Since ∫
Sn−1

| < en, ω > |dσ(ω) =
2π

n−1
2

Γ(n+1
2 )

,

we see that the limiting relation for Ps(B) is contained in Dávila’s theorem.
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I am now ready to move to the main topic of the first part of my talk.
Consider the Heisenberg group Hn with real coordinates g = (z , σ), where
z = (x , y) ∈ R2n and σ ∈ R is the variable in the center. We adopt as
noncommutative group law the one for which

g−1 ◦ g ′ = (z ′ − z , σ′ − σ +
1

2
< z ′, Jz >),

where I have indicated the sympletic matrix J =

(
On In
−In On

)
. Notice that

J2 = −I , and that Jz =

(
y
−x

)
. The corresponding left-invariant vector

fields
Xj = ∂xj −

yj
2
∂σ, Xn+j = ∂yj +

xj
2
∂σ,

generate the Lie algebra of Hn, since [Xi ,Xn+j ] = δij∂σ, all other
commutators being trivial.
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The horizontal perimeter

In 1994, in joint work with D. Danielli and L. Capogna, we introduced in a
general setting a generalisation of De Giorgi’s variational perimeter of a
set, which we called horizontal perimeter PH , and proved an
colorredisoperimetric inequality. Restricted to a Carnot group, such
inequality states that

PH(E ) ≥ C |E |
Q−1
Q ,

where E is a Caccioppoli set (i.e., a measurable set with finite horizontal
perimeter), and Q is the so-called homogeneous dimension of the group
associated to its non-isotropic scalings.
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where E is a Caccioppoli set (i.e., a measurable set with finite horizontal
perimeter), and Q is the so-called homogeneous dimension of the group
associated to its non-isotropic scalings.
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The notion of horizontal perimeter has proved quite useful and, thanks to
the work of many people, the theory has since enormously progressed.
One of the most remarkable features of the horizontal perimeter is that it
does not distinguish between the so-called characteristic and
non-characteristic points of the boundary!
Remaining in the setting of Hn, I recall that, given a C 1 domain E ⊂ Hn,
a point g0 ∈ ∂E is called characteristic if the vector fields Xj(g0) become
tangent to ∂E at g0. These points are really unpleasant, generically they
cannot be avoided (in Hn for instance, every bounded C 1 domain
topologically homeomorphic to a sphere must have at least one such
point) and their presence accounts for a great deal of bad things that
occur with the analysis of Hn. For instance, even the innocent looking
plane E = {(z , σ) ∈ Hn | σ = 0}, for which the origin is the only
characteristic point, with the spectacles of the intrinsic geometry of Hn

looks like a cusp near 0.
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But whereas at characteristic points the Riemannian surface measure fails
to provide a uniform control at every scale of the size of a surface ball, the
horizontal perimeter does exactly that. For instance, in a joint work with
D. Danielli and D. M. Nhieu, we proved that for any C 1,1 domain E ⊂ Hn

one has for every g0 ∈ ∂E , and every r > 0,

C
|B(g0, r)|

r
≤ PH(E ,B(g0, r)) ≤ C ′

|B(g0, r)|
r

.

A result like this has far reaching implications in the development of
potential theory, for instance in extension and restriction theorems, in the
solvability of the Dirichlet problem, etc.
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In Hn consider now the horizontal Laplacian ∆H =
∑2n

j=1 X
2
j . For

0 < s < 1 consider the fractional powers of (−∆H)s defined by means of
Balakrishnan’s classical formula

(−∆H)s f = − s

Γ(1− s)

∫ ∞
0

1

t1+s
[Pt f − f ]dt.

Here, Pt = e−t∆H is the heat semigroup on Hn constructed by B. Gaveau
in his Acta 1977 paper.
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In joint work with G. Tralli we introduce the following quantity:

Given 0 < s < 1/2, we say that a bounded measurable set E ⊂ Hn has
finite horizontal s-perimeter if

PH,s(E )
def
= lim

t→0+
||(−∆H)sPt1E ||1 = sup

t>0
||(−∆H)sPt1E ||1 <∞.

In this case, we call the number PH,s(E ) ∈ [0,∞) the horizontal
s-perimeter of E .
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When Pt is the standard heat semigroup, we proved that there exists an
explicit constant C (n, s) > 0, such that

Ps(E ) = C (n, s) Ps(E ).

Thus, at least in the standard Euclidean framework, the above introduced
nonlocal perimeter Ps(E ) is the same as the classical one Ps(E )!

As we have seen, part of the importance of the nonlocal perimeters is that
they asymptotically recover the classical one of De Giorgi.

It is natural to ask whether a similar phenomenon holds in the
sub-Riemannian setting of Hn.
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Main result

Here is our main result in this direction.

Theorem (Sub-Riemannian Bourgain-Brezis-Mironescu-Dávila)

Let E ⊂ Hn be a C 2 domain. Then, there exists an explicit universal
constant C > 0 such that

lim
s→ 1

2

(
1

2
− s)PH,s(E ) = CPH(E ),

The proof of this result is not as direct as Dávila’s proof in the Euclidean
case. I will now give an idea of the main steps.
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Two asymptotic results

A first basic starting point are the following two results. The first one
states that:

For every bounded measurable set E ⊂ Hn one has

lim sup
s↗1/2

(1/2− s) PH,s(E ) ≤ lim sup
t→0+

1√
4πt
||Pt1E − 1E ||1.

The second asymptotic result goes in the reverse directions with respect to
the one above.

For every bounded measurable set E ⊂ Hn such that 1E ∈ D1,s

(equivalently, PH,s(E ) <∞), one has

lim inf
s↗1/2

(1/2− s) PH,s(E ) ≥ lim inf
t→0+

1√
4πt
||Pt1E − 1E ||1.
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With these two results in hands it is now clear that, if for a bounded
measurable E ⊂ Hn in a suitable class, we can show that

lim inf
t→0+

1√
4πt
||Pt1E − 1E ||1 = lim sup

t→0+

1√
4πt
||Pt1E − 1E ||1 = CPH(E ),

then we are done. We thus turn to proving this crucial fact.

The beginning of the story here is the beautiful approach of M. Ledoux in
his alternative proof of De Giorgi’s isoperimetric inequality (without the
case of equality). One of the key steps was the following asymptotic
relation

Let E ⊂ Rn be a measurable set with finite perimeter, then for every t > 0
one has

||Pt1E − 1E ||L1(Rn) ≤
√

4t

π
P(E ).
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In 2007 Miranda, Pallara, Paronetto & Preunkert have established a
remarkable strengthening of Ledoux’ result and proved that, for every
Caccioppoli set E ⊂ Rn, the limit does in fact exist and one has

lim
t→0+

√
4t

π
||Pt1E − 1E ||L1(Rn) = P(E ).

Our second main step shows that a delicate generalisation of this result to
the sub-Riemannian setting of Hn is possible. We prove in fact the
following

Theorem

Let E ⊂ Hn a bounded C 2 domain. Then,

lim
t→0+

√
4t

π
||Pt1E − 1E ||L1(Hn) = PH(E ).
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The proof of the above asymptotic result is quite delicate and hinges on
the following representation formula which I will state in a general setting.

Let p(x , y , t) be the heat kernel in RN of an operator of Hörmander type
L = −

∑m
j=1 XjX

?
j . For any bounded C 1 domain E ⊂ RN with outer unit

normal ν, one has

||Pt1E − 1E ||1 = 2

∫ t

0

∫
∂E

∫
∂E

p(x , y , τ)

×
m∑
j=1

< Xj , ν(x) >< Xj , ν(y) > dσ(x)dσ(y)dτ .
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L = −

∑m
j=1 XjX

?
j .

For any bounded C 1 domain E ⊂ RN with outer unit
normal ν, one has

||Pt1E − 1E ||1 = 2

∫ t

0

∫
∂E

∫
∂E

p(x , y , τ)

×
m∑
j=1

< Xj , ν(x) >< Xj , ν(y) > dσ(x)dσ(y)dτ .

Nicola Garofalo (University of Padova) Limits of some Besov seminorms Feb 10/12 2020 17 / 34
17 / 34



The proof of the above asymptotic result is quite delicate and hinges on
the following representation formula which I will state in a general setting.

Let p(x , y , t) be the heat kernel in RN of an operator of Hörmander type
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With such representation in hand, our final step is establishing the
following result.

Theorem

Consider a bounded C 2 domain E ⊂ Hn. For any relatively compact set
K ⊂ Hn we have

lim
t→0+

√
4π

t

∫ t

0

∫
∂E∩K

∫
∂E

p(g , g ′, τ)

×
∑
j

< Xj , ν(g) >< Xj , ν(g ′) > dσ(g)dσ(g ′)dτ = PH(E ; K ).

This theorem is obtained from a delicate asymptotic analysis of Gaveau’s
fundamental solution. Since this part is quite technical I cannot present it
here.
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In my remaining time I will discuss the asymptotic behaviour of Besov
seminorms in the case of the Kolmogorov-Fokker-Planck operators.

In 2002 Maz’ya & Shaposhnikova extended to all s ∈ (0, 1) the celebrated
results of Bourgain, Brezis & Mironescu on the asymptotic behaviour as
s → 1 and s → n/p of the norm of the embedding W s,p ↪→ Lq, with
1/p − 1/q = s/n. They also analysed the limit as s → 0+ and proved: if
f ∈W s0,p for some 0 < s0 < 1, then

lim
s→0+

s

∫
RN

∫
RN

|f (x)− f (y)|p

|x − y |N+sp
dxdy =

2

p
σN−1||f ||pLp .

To introduce our results, it is useful to reformulate the above theorem
using the heat semigroup Pt = e−t∆. For α > 0 and 1 ≤ p <∞, consider
the Besov seminorm

N ∆
α,p(f ) =

(∫ ∞
0

1

t
αp
2

+1

∫
Rn

P∆
t (|f − f (x)|p) (x)dxdt

) 1
p

.
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It is an exercise to recognise that

N ∆
s,p(f )p =

2spΓ(N+sp
2 )

π
N
2

∫
RN

∫
RN

|f (x)− f (y)|p

|x − y |N+ps
dxdy .

The theorem of Maz’ya & Shaposhnikova can be reformulated in terms of
the heat semigroup Pt in the following suggestive dimension-free fashion:
if f ∈W s0,p for some s0 ∈ (0, 1), then

lim
s→0+

s N ∆
s,p(f )p =

4

p
||f ||pLp .

I want to present a quite surprising generalisation of this result.
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In a series of papers, G. Tralli and I have recently developed some basic
functional analytic aspects of a class of hypoelliptic and non-symmetric
semigroups whose infinitesimal generators are the
Kolmogorov-Fokker-Planck operators in RN+1 defined as follows:

K u = A u − ∂tu
def
= tr(Q∇2u)+ < BX ,∇u > −∂tu = 0,

where the N × N matrices Q and B have real, constant coefficients, and
Q = Q? ≥ 0. I will assume throughout that N ≥ 2, and indicate with X
the generic point in RN , with (X , t) the one in RN+1.
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The operators K and A were introduced by Hörmander in his celebrated
1967 hypoellipticity paper, where he showed that they are hypoelliptic if
and only if the covariance matrix

K (t) =
1

t

∫ t

0
esBQesB

?
ds

is invertible for every t > 0. Since one obviously has K (t) ≥ 0, this is
equivalent to saying K (t) > 0 for every t > 0.

Equations encompassed by K u = 0 are of considerable interest in physics,
probability and finance. First, they obviously contain the classical heat
equation, which corresponds to the non-degenerate model Q = IN ,
B = ON . More importantly, they encompass the Ornstein-Uhlenbeck
operator, which is obtained by taking Q = IN and B = −IN , as well as the
degenerate operator of Kolmogorov in R2n+1

K0u = ∆vu+ < v ,∇xu > −∂tu = 0,

corresponding to the choice N = 2n, Q =

(
In 0n
0n 0n

)
, and B =

(
0n 0n
In 0n

)
.
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The Hörmander semigroup {Pt}t>0

Given f ∈ S , the Cauchy problem K u = 0 in RN+1, u(X , 0) = f (X )
admits a unique solution Pt f (X ) =

∫
RN p(X ,Y , t)f (Y )dY , where

p(X ,Y , t) =
cN

VolN(Bt(X ,
√
t))

exp

(
−mt(X ,Y )2

4t

)
.

mt(X ,Y ) =
√
< K (t)−1(Y − etBX ),Y − etBX > = intertwined

time-dependent pseudodistance

VolN(Bt(X ,
√
t))

def
= V (t) = volume of the time-dependent

pseudoballs Bt(X ,
√
t) (does not depend on X because of Lie group

invariance of K : to (X , t) ◦ (Y , τ) = (Y + e−tBX , t + τ))

important aspect: the semigroup {Pt}t>0 is in general non-symmetric
and non-doubling!
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This class of PDO’s has been intensively studied over the past thirty years
and thanks to the work of many people a lot is known about it.
Nonetheless, some fundamental aspects presently remain elusive.
The difficulties with these hypoelliptic operators stem from the fact that
the drift term mixes the variables inextricably and this complicates the
geometry considerably. This is already evident at the level of the model
Kolmogorov equation and its probability transition kernel. Such
intertwined geometries are reflected in the large time behaviour of
Hörmander’s fundamental solution of (?). This parallels in many respects
the diverse situations that one encounters in the Riemannian setting when
passing from positive to negative curvature. In general, the relevant
volume function is not power like in t and need not be doubling.
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Small time behavior of V (t)

Small time: (Infinitesimal homogeneous structure) ∃D0 ≥ N ≥ 2 such that
V (t) ∼= tD0/2 as t → 0+ (proved by Lanconelli-Polidoro in 1994). We call
D0 the intrinsic dimension at zero of the semigroup {Pt}t>0.

What drives the evolution however is the large time behavior of the volume
function V (t).
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Large time behavior of V (t)

In this respect we introduce a notion which has a central role:

Consider the set Σ∞
def
=
{
α > 0

∣∣ ∫∞
1

tα/2−1

V (t) dt <∞
}

. We call the number

D∞ = sup Σ∞ the intrinsic dimension at infinity of the semigroup {Pt}t>0.
When Σ∞ = ∅ we set D∞ = 0. If Σ∞ 6= ∅ we clearly have 0 < D∞ ≤ ∞.

The next result plays a pervasive role in our work.

Large time: Suppose tr(B) ≥ 0. Then:

There exists c1 > 0 such that V (t) ≥ c1t for all t ≥ 1.

Moreover, if max{Re(λ) | λ ∈ σ(B)} = L0 > 0, there exists c0 > 0
such that V (t) ≥ c0e

L0t for all t ≥ 1.

Note: The estimate V (t) ≥ c1t =⇒ (0, 2) ⊂ Σ∞ =⇒ D∞ ≥ 2!
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Table of V (t), D0 and D∞

The items in red refer to operators for which the drift satisfies tr(B) ≥ 0.

Notice that:

in Ex. 1 and 3 we have D0 = D∞
in Ex. 4, we have D0 > D∞.

in Ex. 6+ we have D0 < D∞ =∞. V (t) ∼= tne2nt is not doubling!
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Ultracontractivity

An important property of the semigroup is the following Lp → L∞

ultracontractivity:

Let 1 ≤ p <∞ and f ∈ Lp. For every X ∈ RN and t > 0 we have for
some cN,p > 0

|Pt f (X )| ≤
cN,p

V (t)1/p
||f ||p.

Combined with large time behavior we see that

tr(B) ≥ 0 =⇒ |Pt f (X )| → 0 as t →∞.
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Fractional hypoelliptic operators and Sobolev spaces

When tr(B) ≥ 0 the semigroup {Pt}t>0 is strongly continuous on Lp and
has a closed generator (Ap,Dp). Since Ap = A on the dense core S , I
will identify them henceforth. Using Balakrishnan’s formula we define the
fractional powers of A on functions f ∈ S

(−A )s f (X ) = − s

Γ(1− s)

∫ ∞
0

t−s−1[Pt f (X )− f (X )]dt, 0 < s < 1.

For f ∈ S we define for 1 ≤ p <∞
||f ||L 2s,p

def
= ||f ||Lp(RN) + ||(−A )s f ||Lp(RN).

Sobolev spaces: L 2s,p = S
|| ||L 2s,p
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I thus come to the question of interest for my talk. This part is joint work
with Federico Buseghin and Giulio Tralli. In our work Giulio and I
introduced a class of Besov spaces naturally associated with the semigroup
PA
t . Namely, for any α > 0 and 1 ≤ p <∞ we defined the Besov space

Bα,p
A as the collection of all functions f ∈ Lp such that

N A
α,p(f ) =

(∫ ∞
0

1

t
αp
2

+1

∫
RN

PA
t (|f − f (X )|p) (X )dXdt

) 1
p

<∞.

When A = ∆ these spaces coincide with the classical
Aronszajn-Gagliardo-Slobedetzky spaces W s,p!

Therefore, it is natural to ask what is the limiting behaviour of the
seminorms N A

s,p (f ) when s → 0+.
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Here is the surprising answer:

Theorem

Assume that trB ≥ 0. Suppose that f ∈ Bσ0,p for some σ0 > 0. Then,

lim
s→0+

sN A
s,p (f )p =


4
p ||f ||

p
p, trB = 0,

2
p ||f ||

p
p, trB > 0.

Note that we recover (and generalise) the theorem of Maz’ya &
Shaposhnikova when trB = 0.
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The proof of the above result is based on several steps.

First, we show that

Proposition

Let trB ≥ 0. If f ∈ S , then

lim
s→0+

(−A )s f = f .

The above limit is valid both in the pointwise sense, or also in the Lp sense
for any 1 < p ≤ ∞. It continues to be valid in L1 when trB > 0, but it
fails when trB = 0.
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The second step consists in showing that the theorem is valid when f is
sufficiently nice, say f ∈ S . This step already contains the surprising
discrepancy between the two cases trB > 0 and trB = 0.
The final step of the proof is the following density result.

Proposition

For every 0 < s < 1 and any 1 ≤ p <∞, we have

S
Bs,p

A = Bs,p
A .
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I close this talk with a result, which is part of joint work with G. Tralli in
nonlocal isoperimetric inequalities for the operators A .

Theorem

Let s ∈ (0, 1
2 ). Suppose that trB ≥ 0 be valid, and that there exist

D, γD > 0 such that V (t) ≥ γD tD/2 hold.Then, we have

B2s,1
(
RN
)
↪→ L

D
D−2s

(
RN
)
.

Precisely, for every f ∈ B2s,1
(
RN
)

one has

||f ||
L

D
D−2s

≤ s

i(s)Γ(1− s)
N2s,1(f ),

where i(s) > 0 is the constant appearing in the nonlocal isoperimetric
inequality, and N2s,1(f ) denotes the Besov seminorm.
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