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Motivation

We want to investigate the well-posedness of, for example,

{
∂2t u(t, x)− a(t)∆u(t, x) = 0

u(0, x) = u0(x), ∂tu(0, x) = u1(x)

where a(t) is the Heaviside or Delta functions.

Several questions:
• how to interpret the equation when u is a distribution?
(recall e.g. Schwartz’ impossibility result and Hörmander’s wave front
conditions)
• what is the right notion of well-posedness for equations with such irregular
coefficients?
(if u is smooth, the equation makes sense; but if u has singularities, notions
of weak solutions or distributional solutions do not work ...)
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Different regularities of coefficients

For example, consider the wave equation

∂2t u− a(t)∂2xu = 0

Y a ∈ C1: classical or distributional solutions depending on Cauchy data;

Y a ∈ Cα, 0 < α < 1: Gevrey/ultradistributional well-posedness;

Y a ∈ L1
loc: solution in terms of Fourier hyperfunctions;

Y a is measurable: Kato theory of semigroups;

Y a ∈ D′: ?? our question;

Y a is Colombeau: Colombeau solutions for some examples (e.g.
Lafon+Oberguggenberger, Hörmann, Marti, ...);

If a is a distribution, known ‘regular’ approaches are not enough, and
Colombeau approach may be too abstract.

Ideally, from a good notion of a solution , we want that:

it is weak enough to guarantee that solutions exist;

it is strong enough to give uniqueness and consistency with
classical/distributional solutions if they exist.
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Weakening of the notion of ‘solution’ to assure existence

Historically, the development of PDEs consisted in weakening the notion of

‘solution’ to ensure its existence:

classical solutions: pointwise solutions when everything is regular;
Sobolev’s weak solutions when everything is in L1

loc;
Schwartz’ distributional solutions for interpretation as functionals;
ultradistributional solutions when no distributional well-posedness (e.g.
already for wave equations with nonnegative smooth propagation speed
and smooth data: Colombini & Spagnolo, Acta Math, 1982);

All these notions are backwards compatible (consistency).

Our ‘very weak’ solutions for settings where the theory of distributions is
not working. Crucial part: backward compatibility (consistency).

Michael Ruzhansky Very weak solutions



Solutions have been always understood in different ways

Different types of notions of solutions:

classical solutions: pointwise, same notion for all equations;

, Sobolev’s weak solutions:
** the notion of solutions depends on equation!

distributional solutions: Schwartz’ theory exists independently of
equations; same for hyperfunctions;

Colombeau solutions: Colombeau’s theory exists independently of
equations; Also, problems with backward compatibility?!

, Very weak solutions: for distributional coefficients and data, and also
allowing multiplicities (Ruzhansky+Garetto, Arch. Ration. Mech.
Anal., 2015). * similarly to weak solution,
** it is adapted to the equation

(properties of solutions to the regularised equation)
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Simple example

Wave equation with a = a(t) ≥ 0 (for simplicity assume even a > 0):

(CP)

{
∂2t u− a(t)∂2xu = 0, t ∈ [0, T ], x ∈ R,
u(0, x) = u0(x), ∂tu(0, x) = u1(x).

Fact: u0, u1 ∈ C∞0 , a ∈ C, but there may be no distributional solution
u(t, ·) 6∈ D′(R), ∀t > 0. However, if a ∈ C∞, there is solution u ∈ C∞.

Regularisation: consider Friedrichs-type regularisations aε = a ∗ ψω(ε)
where ψω(ε)(t) = ω(ε)−1ψ(t/ω(ε)), and ω(ε)↘ 0 as ε↘ 0.

A general family {fε}ε>0 ∈ C∞ is called moderate if ∀α ∈ N
∃N ∈ N, c > 0:

sup
x∈R
|∂αfε(x)| ≤ cε−N , ∀ε ∈ (0, 1].

NOTE: if a ∈ E ′(R), then the family {aε = a ∗ ψω(ε)}ε>0 is moderate.
So we can think of distributions as moderate-families:

compactly supported distributions E ′(R) ⊂ {C∞-moderate families}
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Simple example of a very weak solution

Definition (Simplest case)

The net (uε)ε ∈ C∞([0, T ]×R) is a very weak solution of (CP) if there exists a

moderate regularisation aε of the coefficient a such that (uε)ε solves the regularised
Cauchy problem {

∂2t uε(t, x)− aε(t)∂
2
xuε(t, x) = 0,

uε(0, x) = u0, ∂tuε(0, x) = u1,

for all ε ∈ (0, 1], and (uε)ε is moderate

Summary of results for this notion:
• (existence) for any a ∈ E ′, the Cauchy problem (CP) has a very weak solution;
• (uniqueness) a very weak solution is unique in an appropriate sense;
• (consistency) with classical or distributional/ultradistributional solutions:

∗ if a ∈ C∞ and u0, u1 ∈ C∞ so that there exists a classical solution u ∈ C∞, then for

any regularising family aε for a, we have uε → u in C∞ as ε→ 0

∗ if a ∈ C∞ and u0, u1 ∈ D′ so that there exists a distributional solution u(t) ∈ D′,

then uε → u in D′ as ε→ 0
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Wave equation for hypoelliptic operators

In this talk we are interested in the well-posedness of the following Cauchy
problem for general hypoelliptic (Rockland operator of homogeneous degree
ν) differential operator R on general graded Lie group G with the
non-negative propagation speed a = a(t):

∂2t u(t) + a(t)Ru(t) = 0, t ∈ [0, T ],
u(0) = u0 ∈ L2(G),
∂tu(0) = u1 ∈ L2(G).

(1)
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A (connected and simply connected) Lie group G is graded if its Lie
algebra:

g =

∞⊕
i=1

gi,

where g1, g2, ..., are vector subspaces of g, only finitely many not {0}, and

[gi, gj ] ⊂ gi+j ∀i, j ∈ N.

If g1 generates g through commutators, the group is said to be stratified,
and the sum of squares of a basis of vector fields in g1 yields a
sub-Laplacian on G.
Example 1 (Abelian case). The abelian group (Rn,+) is graded: its Lie
algebra Rn is trivially graded, i.e. g1 = Rn.
Example 2 (Heisenberg group). The Heisenberg group Hn is stratified:
its Lie algebra hn can be decomposed as hn = g1 ⊕ g2 where
g1 = ⊕nj=1RXj ⊕ RYj and g2 = RT , where

Xj = ∂xj −
yj
2
∂t, Yj = ∂yj +

xj
2
∂t, j = 1, . . . , n, T = ∂t. (2)
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Positive Rockland operators

Recall: Rockland operator R is a homogeneous hypoelliptic invariant
differential operator on a nilpotent Lie group. (after Helffer and Nourrigat)
To give some examples, this setting includes:

for G = Rn, R may be any positive homogeneous elliptic differential
operator with constant coefficients. For example, we can take

R = (−4)m or R = (−1)m
n∑
j=1

aj

(
∂

∂xj

)2m

, aj > 0, m ∈ N;

for G = Hn the Heisenberg group, we can take

R = (−L)m or R = (−1)m
n∑
j=1

(ajX
2m
j + bjY

2m
j ), aj , bj > 0,m ∈ N,

where L is the sub-Laplacian and Xj , Yj are the left invariant vector
fields.
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for any stratified Lie group (or homogeneous Carnot group) with
vectors X1, . . . , Xk spanning the first stratum, we can take

R = (−1)m
k∑
j=1

ajX
2m
j , aj > 0,

so that in particular, for m = 1, R is a positive sub-Laplacian;

for any graded Lie group G ∼ Rn with dilation weights ν1, . . . , νn let
us fix the basis X1, . . . , Xn of the Lie algebra g of G satisfying

DrXj = rνjXj , j = 1, . . . , n, r > 0,

where Dr denote dilations on the Lie algebra. If ν0 is any common
multiple of ν1, . . . , νn, the operator

R =

n∑
j=1

(−1)
ν0
νj ajX

2
ν0
νj

j , aj > 0

is a Rockland operator of homogeneous degree 2ν0.
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Some discussion of Rockland operators

Rockland operator R is a homogeneous hypoelliptic invariant
differential operator on a nilpotent Lie group.

R exists ⇔ dilation weights are rational ⇔ the group is graded.

Folland and Stein: this is a natural setting to combine harmonic
analysis & PDEs. (and the usual working assumption)

Rockland condition: for every representation π ∈ Ĝ, except for the
trivial representation, the operator π(R) is injective on H∞π , that is,

∀υ ∈ H∞π , π(R)υ = 0⇒ υ = 0.

Here π(R) := dπ(R) is the infinitesimal representation of the Rockland
operator R as of an element of the universal enveloping algebra of G.

Rockland, R. Beals, Helffer-Nourrigat (1979): equivalence of above
conditions
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Wave equation for hypoelliptic operators

Let R be a Rockland operator on a graded Lie group G.

∂2t u(t) + a(t)Ru(t) = f(t), u(0) = u0 ∈ L2(G), ∂tu(0) = u1 ∈ L2(G).

• Ruzhansky+Tokmagambetov, ARMA 2017: for R with discrete
spectrum; However, the Rockland operator R has continuous spectrum.

We will use R-Gevrey (Roumieu) GsR(G) and R-Gevrey (Beurling) type

spaces G(s)R (G) for s ≥ 1, which are defined by

GsR(G) := {f ∈ C∞(G)|∃A > 0 : ‖eAR
1
2s f‖L2(G) <∞}

and

G(s)R (G) := {f ∈ C∞(G)|∀A > 0 : ‖eAR
1
2s f‖L2(G) <∞}.

Subelliptic Sobolev spaces ‖f‖Hs
R(G) := ‖(I +R)

s
ν f‖L2(G).

For compact Lie groups, such spaces were studied in Ruzhansky+Garetto
(JDE, 2017)
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Wave equation for hypoelliptic operators, Hölder case
Theorem (Ruzhansky+Taranto)

R - a positive Rockland operator of homogeneous degree ν, T > 0. Then
• Let a ∈ Lip([0, T ]) with a(t) ≥ a0 > 0. Let s ∈ R,

(u0, u1) ∈ Hs+ ν
2

R (G)×Hs
R(G). Then ∃! solution satisfying

‖u(t, ·)‖2
H
s+ ν

2
R (G)

+ ‖∂tu(t, ·)‖2HsR(G) ≤ C(‖u0‖2
H
s+ ν

2
R (G)

+ ‖u1‖2HsR(G));

• Let a ∈ Cα([0, T ]) with 0 < α < 1 and a(t) ≥ a0 > 0. If
(u0, u1) ∈ GsR(G)× GsR(G), then ∃! solution in C2([0, T ],GsR(G)) provided that

1 ≤ s < 1 +
α

1− α
;

• Let a ∈ C`([0, T ]) with ` ≥ 2 and a(t) ≥ 0. If (u0, u1) ∈ GsR(G)× GsR(G), then
∃! solution in C2([0, T ],GsR(G)), provided that

1 ≤ s < 1 +
`

2
;

• Let a ∈ Cα([0, T ]) with 0 < α < 2 and a(t) ≥ 0. If (u0, u1) ∈ GsR(G)× GsR(G),
then ∃! solution in C2([0, T ],GsR(G)), provided that

1 ≤ s < 1 +
α

2
.
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Now we shall describe the notion of very weak solutions and formulate the
corresponding results for distribution a ∈ D′([0, T ]). First, we regularise the
distributional coefficient a by the convolution with a suitable mollifier ψ
obtaining families of smooth function (aε)ε as follows

aε = a ∗ ψω(ε) (3)

with
ψω(ε)(t) = (ω(ε))−1ψ(t/ω(ε)),

where ω(ε) > 0 (which we will choose later) is such that ω(ε)→ 0 as
ε→ 0, and ψ is a Friedrichs-mollifier, that is,

ψ ∈ C∞0 (R), ψ ≥ 0 and

∫
ψ = 1.

It turns out that the net (aε)ε is C∞-moderate, in the sense that their
C∞-seminorms can be estimated by a negative power of ε. More precisely,
we will make use of the following notions of moderateness.
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Definition

A net of functions (fε)ε ∈ C∞(R)(0,1] is said to be C∞- moderate if
for all K b R and for all α ∈ N0 there exist N ∈ N0 and c > 0 such
that supt∈K |∂αfε(t)| ≤ cε−N−α, for all ε ∈ (0, 1], where K b R
means that K is a compact set in R.

A net of functions (uε)ε ∈ C∞([0, T ];Hs
R)(0,1] is

C∞([0, T ];Hs
R)-moderate if there exist N ∈ N0 and ck > 0 for all

k ∈ N0 such that ‖∂kt uε(t, ·)‖Hs
R
≤ ckε−N−k, for all t ∈ [0, T ] and

ε ∈ (0, 1].

We say that a net of functions (uε)ε ∈ C∞([0, T ];H−∞(s) )(0,1] is

C∞([0, T ];H−∞(s) )-moderate if there exists η > 0 and, for all p ∈ N0

there exists cp > 0 and Np > 0 such that

‖e−ηR
1
2s ∂pt uε(t, ·)‖L2(G) ≤ cpε−Np−p, for all t ∈ [0, T ] and ε ∈ (0, 1].
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Note that the conditions of moderateness are natural in the sense that
regularisations of distributions are moderate, namely by the structure
theorems for distributions we can think that

compactly supported distributions E ′(R) ⊂ {C∞-moderate families }. (4)

Thus, by (4) we see that while a solution to the Cauchy problems may not
exist in the space of distributions E ′(R), it may still exist (in a certain
appropriate sense) in the space on the right hand side of (4). The
moderateness assumption will be enough for our purposes. However, we
note that regularisation with standard Friedrichs mollifiers is not sufficient,
hence the introduction of a family ω(ε) in the above regularisations.
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Wave equation for hypoelliptic operators, definition

Let H−∞s and H−∞(s) be the spaces of linear continuous functionals on GsR and G(s)R ,

respectively. Recall

∂2t u(t) + a(t)Ru(t) = 0, u(0) = u0 ∈ L2(G), ∂tu(0) = u1 ∈ L2(G).

Let s be a real number. We say that the net (uε)ε ⊂ C∞([0, T ];Hs
R) is its very

weak solution of Hs-type if there exist
• C∞-moderate regularisation aε of the coefficient a such that (uε)ε solves the
following regularised problem

∂2t uε(t) + aε(t)Ruε(t) = 0, uε(0) = u0 ∈ L2(G), ∂tuε(0) = u1 ∈ L2(G),

for all ε ∈ (0, 1], and is C∞([0, T ];Hs
R)-moderate.

The net (uε)ε ⊂ C∞([0, T ];H−∞(s) ) is a very weak solution of H−∞(s) -type if there
exist
• C∞-moderate regularisation aε of the coefficient a, such that (uε)ε solves the
regularised problem for all ε ∈ (0, 1], and is C∞([0, T ];H−∞(s) )-moderate.
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Wave equation for hypoelliptic operators, VW solutions
Theorem. Y.+Ruzhansky, JDE 2020

Let G be a graded Lie group and let R be a positive Rockland operator of
homogeneous degree ν. Let T > 0 and s ∈ R.
• Let a = a(t) be a positive distribution with compact support included in [0, T ],
such that a ≥ a0 > 0. Let u0, u1 ∈ Hs

R. Then there exists a very weak solution of
Hs-type.
• Let a = a(t) be a nonnegative distribution with compact support included in
[0, T ], such that a ≥ 0. Let u0, u1 ∈ H−∞(s) . Then there exists a very weak solution

of H−∞(s) -type.

• The above very weak solutions are unique in the Colombeau sense.
• There is consistency (backward compatibility) in all the cases of the theorem by
Ruzhansky-Taranto (when a(t) is Holder or more regular). For example:
Let a(t) ≥ a0 > 0 and a ∈ Cα([0, T ]) with 0 < α < 1. Let 1 ≤ s < 1 + α

1−α ,

(u0, u1) ∈ H−∞(s) . Let u be a very weak solution of H−∞(s) -type. Then for any

regularising families aε, any representative (uε)ε of u converges in C2([0, T ];H−∞(s) )

as ε→ 0 to the unique classical solution in C2([0, T ];H−∞(s) ) of our Cauchy

problem.

Nurgissa Yessirkegenov (joint work with Prof. Michael Ruzhansky)Very weak solutions to wave equations on graded groups



Steps of the proof

A regularisation of the coefficient to get a family aε ∈ C∞.

A regularisation of data (depending on how regular it is initially).

Once we are in the regularised (Gevrey) setting the known results imply the
existence of a classical (Gevrey) solution for each ε > 0. However, to show
that the very weak solutions exist we need to show that the dependence of
solutions on the regularisation parameter ε is moderate.

To achieve this, we apply the group Fourier transform to the equation with
respect to x ∈ G, then using the fact that spectrum of π(R) is discrete, we
reduce the equation to a system. We also use the theory of the
quasi-symmetrisers.

We use families of energy inequalities depending on parameter ε.

By relating parameters to the frequency, we obtain ‘very weak solutions’.

If the coefficient are regular enough we control their regularisations well. This
allows to show that the difference between the classical/ultradistributonal
solution and the very weak solution is negligible. This is done by an
appropriate version of the energy inequality.
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Summary and conclusions

If the coefficient of the wave equation(s) are Hölder or they are very
regular (even analytic) but there are multiplicities, the class of
distributions is not enough to find a solution. However, in the above
cases the class of ultradistributions is enough.
If the coefficient are continuous, L1

loc, measures, or distributions, the
class of ultradistributions is not enough. Also, the notion of a
‘distributional solution’ is too strong.
Therefore, we need to extend the class of possible solutions and to
further weaken the notion of a solution.
We show: if coefficient is a distribution, a ‘very weak solution’ exists.
We use explicitly given regularisations, so one gets an ‘approximation’
of a solution.
If the Cauchy problem happens to have a classical, weak, or
distributional solution, the ’very weak solution’ recaptures it.
if there is no distributional or ultradistributional solution, maybe we
have to live with the ’very weak solution’. Having ’existence’ allows
further handling of solutions and their properties.
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Time to talk about global well-posedness for a

semilinear heat equation?
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Global well-posedness for a semilinear heat equation

Let G be a connected unimodular Lie group, endowed with the Haar
measure, and let X = {X1, · · · , Xk} be a Hörmander system of left
invariant vector fields. We consider the Cauchy problem on G{

ut − Lu = |u|p, x ∈ G, t > 0, 1 < p <∞
u(0, x) = u0(x), x ∈ G, (5)

for u0 ≥ 0, where L is the sub-Laplacian of G, that is,

L :=

k∑
i=1

X2
i .
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Unimodular Lie groups

Let ρ(x, y) be the Carnot-Carathéodory distance
G×G 3 (x, y) 7→ ρ(x, y) 7→ ρ(x, y) associated with X. We denote by ρ(x)
the distance from the unit element of the group to x ∈ G. Let V (t) be the
volume of the ball B(x, t) centred at x ∈ G and of radius t > 0 for ρ(x).
Recall that we have V (t) ' td for t ∈ (0, 1), where d = d(G, X) ∈ N is the
local dimension. In the case t ≥ 1, only two situations may occur,
independently of the choice of X:

either G has polynomial volume growth of order D, which means that
there exists the global dimension D = D(G) ∈ N0 such that
V (t) ' tD, t ≥ 1,

or G has exponential volume growth, that is, there exist positive
constants c1, C1, c2 and C2 such that c1e

c2t ≤ V (t) ≤ C1e
C2t t ≥ 1.

Let us also recall that the closed subgroups of nilpotent Lie groups,
connected Type R Lie groups, motion groups, the Mautner group and
compact groups are all examples of polynomial growth groups.
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Global existence result

Let 1 < p <∞. Let 0 ≤ u0 ∈ Lq(G) with 1 ≤ q <∞ and assume that∫ ∞
0
‖e−sLu0‖p−1L∞(G)ds <

1

(p− 1)
. (6)

Then there exists a non-negative continuous curve u : [0,∞)→ Lq(G)
which is a global solution to (5) with initial value u0. Moreover, we have

(e−tLu0)(x) ≤ u(t, x) ≤ C(e−tLu0)(x), ∀x ∈ G, ∀t ≥ 0, (7)

for some C > 1 (depending on u0). For example, (7) holds with

C =

(
1− (p− 1)

∫ ∞
0
‖e−sLu0‖p−1L∞(G)ds

)− 1
p−1

.
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Conclusion

When we know the behavior of the heat kernel, then one can see that to
satisfy the condition (6) there appears a condition for the parameter p,
which is usually called a Fujita exponent.

In the case D = 0 (e.g. when G is a compact group), that is, the case
when the volume growth at infinity is constant, the Cauchy problem
(5) does not admit any nontrivial distributional solution u ≥ 0 in
(0,∞)×G for 1 < p <∞.

In the case of polynomial volume growth, there exists a global, classical
solution of (5) for p > pF = 1 + 2/D and sufficiently small
non-negative u0.

When G has exponential volume growth, then the Cauchy problem (5)
has a global, classical solution for all 1 < p <∞ and sufficiently small
non-negative u0.
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Thank you for your attention!
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