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L = −∆ Laplace operator on Rn

{
∂2
t u = −L u

u|t=0 = f , ∂tu|t=0 = 0

u(t, x) = cos(t
√

L )f (x) =
1

2(2π)n

∑
ε=±1

∫
Rn

∫
Rn

e i(εt|ξ|+(x−y)·ξ)f (y) dy dξ

phase: φ(t, x , y , ξ) = t|ξ|+ (x − y) · ξ

gradient: ∂ξφ(t, x , y , ξ) = t ξ
|ξ| + x − y critical points: x − y = −t ξ

|ξ|

hessian: ∂2
ξφ(t, x , y , ξ) = t

|ξ|

(
I − ξ

|ξ| ⊗
ξ
|ξ|

)
rank: rk ∂2

ξφ = n − 1

|t|

• f ∈ C∞, supp f ⊆ B(0, 1);

• stationary phase:
‖ cos(t

√
L )f ‖∞ . |t|−(n−1)/2, t →∞;

• cos(t
√

L )f essentially supported in annulus of
measure |t|n−1;

• ‖ cos(t
√

L )f ‖p . |t|(n−1)(1/p−1/2);

‖ cos(t
√

L )f ‖p . (1 + |t|)α‖(1 + L )α/2f ‖p, α > (n − 1)|1/2− 1/p|
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L = −∆ Laplace operator on Rn

Theorem (Miyachi ’80, Peral ’80)

For all p ∈ [1,∞], α ≥ (n − 1)|1/2− 1/p|,

sup
t>0
‖(1 + t2L )−α/2 cos(t

√
L )‖p→p <∞,

except for p = 1,∞ and α = (n − 1)/2, where H1

and BMO boundedness holds.
0 1 1

p

α

1
2

◦
n−1

2

◦

• subordination: F (
√

L ) = 1
2π

∫
R F̂ (τ) cos(τ

√
L ) dτ , F even

• supt>0 ‖F (t
√

L )‖1→1 .s,K ‖F‖L2
s
, s > n/2, supp F ⊆ K b R

• ‖F (
√

L )‖L1→L1,∞ .s supt>0 ‖F (t·)χ‖L2
s
, s > n/2, 0 6= χ ∈ C∞c ((0,∞))

Corollary of Mihlin–Hörmander multiplier theorem

For all p ∈ (1,∞), s > n|1/2− 1/p|,

‖F (
√

L )‖p→p .s,p sup
t>0
‖F (t·)χ‖L∞s .

0 1 1
p

s

1
2

n
2
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• L = H(x ,D) + first order terms
• (self-adjoint, nonnegative) second-order differential operator
• on n-manifold M with smooth measure µ

• ellipticity: H(x , ξ) & |ξ|2

—

(H(x, ·) nondegenerate quadratic form on T∗x M)

• in case M is compact:
• Mihlin–Hörmander multiplier estimate

‖F (
√

L )‖p→p .p,s sup
t≥0
‖F (t·)χ‖L2

s
(MH)

for p ∈ (1,∞), s > n/2, due to Seeger and Sogge (1989);
• Miyachi–Peral wave estimate

sup
0<t≤1

‖(1 + t2L )−α/2 cos(t
√

L )‖p→p <∞ (MP)

for α ≥ (n − 1)|1/2− 1/p| follows from work of Seeger, Sogge and
Stein (1991) on FIO;

• for noncompact M:
• Mihlin–Hörmander type results with finite order of differentiability may

fail completely (Clerc and Stein 1974);
• positive results available under global assumptions on the geometry

(e.g., Hebisch 1995, Duong–Ouhabaz–Sikora 2002), but only few sharp results
available (e.g., Guillarmou–Hassell–Sikora 2013);

• in any case, transplantation applies:
• ranges of validity of (MH) and (MP) on M cannot be wider than those

on Rn
(Mitjagin 1974, Kenig–Stanton–Tomas 1982);
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• Hörmander’s sum of squares: L = −
∑

j X
2
j + first order terms,

• Xj smooth vector fields on M

• horizontal distribution HxM = span{Xj |x}j ⊆ TxM, x ∈ M

• lack of ellipticity when HxM 6= TxM

• bracket-generating condition: the Xj and their iterated Lie brackets up to
order s span the tangent space of M at each point
• the minimum s is called the step (s = 1 in the elliptic case)
• (Hörmander ’67) L is hypoelliptic and satisfies subelliptic estimates
• (Chow ’39) points of M can be joined by horizontal curves

• Carnot–Carathéodory distance, sub-Riemannian structure (cometric H)

• relevant dimensional parameters:
• topological dimension: n = dimM
• horizontal rank: r = dimHxM
• local doubling dimension: Q =

∑s
`=1 ` dim(H`xM/H`−1

x M)
• H`xM = span of iterated Lie brackets of the Xj at x up to order `
• µ(B(x ,R)) ∼ RQ , R small

• r ≤ n ≤ Q, with strict inequalities in nonelliptic case

• example: homogeneous sub-Laplacians on stratified (Carnot) groups
• G ∼= g =

⊕s
`=1 g`, g`+1 = [g1, g`], {Xj}j basis of g1, L = −

∑
j X

2
j

• Q =
∑
` ` dim g`, n =

∑
` dim g`, r = dim g1

• automorphic dilations δt : δt |g` = t` idg` , det δt = tQ
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• Carnot–Carathéodory distance, sub-Riemannian structure (cometric H)

• relevant dimensional parameters:
• topological dimension: n = dimM
• horizontal rank: r = dimHxM
• local doubling dimension: Q =

∑s
`=1 ` dim(H`xM/H`−1

x M)
• H`xM = span of iterated Lie brackets of the Xj at x up to order `
• µ(B(x ,R)) ∼ RQ , R small

• r ≤ n ≤ Q, with strict inequalities in nonelliptic case

• example: homogeneous sub-Laplacians on stratified (Carnot) groups
• G ∼= g =

⊕s
`=1 g`, g`+1 = [g1, g`], {Xj}j basis of g1, L = −

∑
j X

2
j

• Q =
∑
` ` dim g`, n =

∑
` dim g`, r = dim g1

• automorphic dilations δt : δt |g` = t` idg` , det δt = tQ

Alessio Martini (Birmingham) Sub-Riemannian Wave Equation
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• Carnot–Carathéodory distance, sub-Riemannian structure (cometric H)

• relevant dimensional parameters:
• topological dimension: n = dimM
• horizontal rank: r = dimHxM
• local doubling dimension: Q =

∑s
`=1 ` dim(H`xM/H`−1

x M)
• H`xM = span of iterated Lie brackets of the Xj at x up to order `
• µ(B(x ,R)) ∼ RQ , R small

• r ≤ n ≤ Q, with strict inequalities in nonelliptic case

• example: homogeneous sub-Laplacians on stratified (Carnot) groups
• G ∼= g =

⊕s
`=1 g`, g`+1 = [g1, g`], {Xj}j basis of g1, L = −

∑
j X

2
j

• Q =
∑
` ` dim g`, n =

∑
` dim g`, r = dim g1

• automorphic dilations δt : δt |g` = t` idg` ,

det δt = tQ

Alessio Martini (Birmingham) Sub-Riemannian Wave Equation
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Heisenberg group H1 = Rx × Ry × Ru

• (x , y , u) · (x ′, y ′, u′) = (x + x ′, y + y ′, u + u′ + (xy ′ − yx ′)/2)

• L = −(X 2 +Y 2), where X = ∂x − y
2∂u, Y = ∂y + x

2∂u, [X ,Y ] = ∂u
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ς(L ) := inf
{
s ∈ R : ∀F : ‖F (L )‖L1→L1,∞ ≤ Cs supr≥0 ‖F (r ·)χ‖L2

s

}
Mihlin
-Hörmander
threshold

• ς(L ) ≤ (Qglobal + 1)/2 under doubling condition and Gaussian-type heat
kernel bounds (Alexopoulos ’95, Hebisch ’95, Duong&Ouhabaz&Sikora ’02)

• ς(L ) ≤ Q/2 for homog. sub-Laplacians on stratified groups
(Mauceri&Meda ’90, Christ ’91)

• ς(L ) ≤ n/2 for homog. sub-Laplacians on Heisenberg-type groups
(Hebisch ’93, Müller&Stein ’94)

• Miyachi–Peral estimates for α ≥ (n − 1)|1/2− 1/p| on Heisenberg-type
groups (Müller&Stein ’99, Müller&Seeger ’15)

• ς(L ) < Q/2 for homog. sub-Laplacians on 2-step stratified groups and
ς(L ) ≤ n/2 on 2-step groups with n ≤ 7 or dim g2 ≤ 2 (M.&Müller ’13-’16)

• ς(L ) ≤ n/2 for dist. sub-Laplacians on complex and quaternionic spheres
(Cowling&Sikora ’01, Cowling&Klima&Sikora ’11, Casarino&Cowling&M.&Sikora ’17,

Ahrens&Cowling&M.&Müller ’19)

• ς(L ) ≤ n/2 for various classes of Baouendi–Grushin operators
(M.&Sikora ’12, Chen&Sikora ’13, M.&Müller ’14, Casarino&Ciatti&M. ’19),
also for higher step and perturbation of coefficients (Dall’Ara&M. ’19)

• ς(L ) ≥ r/2 by transplantation to Euclidean space

• ς(L ) ≥ n/2 on Heisenberg groups (Müller&Stein ’94)

• ς(L ) ≥ n/2 on 2-step groups (M.&Müller, GAFA ’16)
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• M n-manifold with smooth measure µ

• L = H(x ,D) + first order terms
• nonnegative selfadjoint second-order differential operator on M
• satisfying Hörmander’s condition at a point x0 ∈ M

Theorem 1 (M. & Müller & Nicolussi Golo, arXiv:1812.02671)

If, for some p ∈ [1,∞] and s ≥ 0, the estimate

‖F (L )‖p→p . sup
t≥0
‖F (t·)χ‖L∞s

holds for all F ∈ S(R), then s ≥ n|1/2− 1/p|. In particular, ς(L ) ≥ n/2.

Theorem 2 (M. & Müller & Nicolussi Golo, arXiv:1812.02671)

If, for some p ∈ [1,∞] and α ≥ 0, the estimate

‖χ(t
√

L /λ) cos(t
√

L )‖p→p . λ
α

holds for all small t and large λ, then α ≥ (n − 1)|1/2− 1/p|.

• χ ∈ C∞c ((0,∞)) nontrivial cutoff

Alessio Martini (Birmingham) Sub-Riemannian Wave Equation



• M n-manifold with smooth measure µ

• L = H(x ,D) + first order terms
• nonnegative selfadjoint second-order differential operator on M
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FIO representation of the wave propagator
for elliptic L = H(x ,D) + first order terms
• locally and for small times,

cos(t
√

L ) = Q(t) + Q(−t) + smoothing,

where

Q(t)f (x) =

∫
e iφ(t,x,y,ξ) q(t, x , y , ξ) f (y) dy dξ

and the phase function φ satisfies the eikonal equation

∂tφ =
√
H(x , ∂xφ) (E)

• (Hörmander ’68) we can choose a phase function of the form

φ(t, x , y , ξ) = ϕ(x , y , ξ) + t
√
H(y , ξ)

with ϕ(x , y , ξ) = ξ · (x − y) + O(|x − y |2|ξ|), whence

H(x , ·) nondegenerate =⇒ rk ∂2
ξ

√
H = n − 1

=⇒ rk ∂2
ξφ = n − 1 at critical points

=⇒ “stationary phase” applies as on Rn

• when L is not elliptic:
• √H not smooth for ξ 6= 0  obstruction for the solution of (E)
• H degenerate  not clear why rk ∂2

ξφ = n − 1 at critical points
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• (Hörmander ’68) we can choose a phase function of the form

φ(t, x , y , ξ) = ϕ(x , y , ξ) + t
√
H(y , ξ)

with ϕ(x , y , ξ) = ξ · (x − y) + O(|x − y |2|ξ|), whence

H(x , ·) nondegenerate =⇒ rk ∂2
ξ

√
H = n − 1

=⇒ rk ∂2
ξφ = n − 1 at critical points

=⇒ “stationary phase” applies as on Rn

• when L is not elliptic:
• √H not smooth for ξ 6= 0  obstruction for the solution of (E)
• H degenerate  not clear why rk ∂2

ξφ = n − 1 at critical points

Alessio Martini (Birmingham) Sub-Riemannian Wave Equation



• when L is not elliptic:
• √H not smooth for ξ 6= 0  obstruction for the solution of

∂tφ =
√
H(x , ∂xφ) (E)

• H degenerate  not clear why rk ∂2
ξφ = n − 1 at critical points

• by microlocalising off a conic neighbourhood of {H = 0}, we avoid the
region where

√
H is not smooth

• (Trèves) we can find a solution of (E) of the form

φ(t, x , y , ξ) = w(t, x , ξ)− y · ξ, w(0, x , ξ) = x · ξ
• explicit formula in terms of the Hamiltonian flow of H

• by solving transport equations, this yields, locally and for small times,

cos(t
√

L )P = Q(t) + Q(−t) + smoothing

• Q is a FIO with phase function φ,
• P localises frequencies to a conic region inside {H 6= 0}

• for this phase function we can prove:
• ∂ξφ(t, x , y , ξ) = 0 ⇐⇒ x = ExpHy (t ξ̂), ξ̂ = − ξ

2
√
H(y,ξ)

• ExpHy : T∗y M → M exponential map for the Hamiltonian flow of H
• rk ∂2

ξφ(t, x , y , ξ) = rk
[
(DExpHy |tξ̂)|Vξ

]
at critical points and t 6= 0

• Vξ = ker(DH(y , ·)|ξ) is a 1-codimensional subspace of T∗y M
• in particular, DExpHy |tξ̂ nondegenerate =⇒ rk ∂2

ξφ = n − 1
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• how to ensure that DExpHy |ξ is nondegenerate for some 0 6= ξ ∈ T ∗y M?

• in the elliptic case, DExpHy |0 is nondegenerate,

hence DExpHy |ξ is nondegenerate for all small ξ
• in the nonelliptic case, however, DExpHy |0 is degenerate,

since imDExpHy |0 = HyM
• we must exploit the bracket-generating condition

Theorem (Agrachev ’09)

On an equiregular analytic sub-Riemannian manifold (M,H), the differential
DExpHy |ξ of the exponential map is nondegenerate for generic ξ ∈ T ∗y M.

• proof based on Sard’s theorem and Chow’s result
• N.B.: in step 3 or higher, not all length-minimisers come from Exp (!)

• combining all the above proves the stated necessary conditions for (MH) and
(MP) for stratified Lie groups and homogeneous sub-Laplacians

• the general case follows by “nonisotropic transplantation” (M. ’17)
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