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¥ = —A Laplace operator on R”
Theorem (Miyachi '80, Peral '80)
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Corollary of Mihlin—-Hérmander multiplier theorem

For all p € (1, 00),
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) cos( 7'\/_) dr,
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® in case M is compact:
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available (e.g., Guillarmou-Hassell-Sikora 2013);
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® X; = ioj(x, D) smooth vector fields on M,  H(x,§) =}, oi(x,€)?
® horizontal distribution HxM = span{Xj|<}; C TxXM, xeM™m
® |ack of ellipticity when HiM # T, M
® bracket-generating condition: the X; and their iterated Lie brackets up to
order s span the tangent space of M at each point
® the minimum s is called the step (s = 1 in the elliptic case)

® (Hérmander '67) . is hypoelliptic and satisfies subelliptic estimates
® (Chow '39) points of M can be joined by horizontal curves
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°* G=g=@; 0 g1 = [g1,0]
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* Gx2g=@) ;9¢, Ge+1=[01,0¢), {Xj}; basis of g1,
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* Gg=@; 0 0e1=[o1,0] {X}basisof g1, £ =-3, X’
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® bracket-generating condition: the X; and their iterated Lie brackets up to
order s span the tangent space of M at each point
® the minimum s is called the step (s = 1 in the elliptic case)

® (Hérmander '67) . is hypoelliptic and satisfies subelliptic estimates
® (Chow '39) points of M can be joined by horizontal curves

® Carnot—Carathéodory distance, sub-Riemannian structure (cometric H)

® relevant dimensional parameters:
® topological dimension: n = dim M
® horizontal rank: r = dim HM
® local doubling dimension: Q = >"5_, £dim(H:M/H: M)
® H{M = span of iterated Lie brackets of the X; at x up to order ¢
® u(B(x,R)) ~ R, R small
® r < n < Q, with strict inequalities in nonelliptic case
® example: homogeneous sub-Laplacians on stratified (Carnot) groups
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° Q=3 ,¢dimg,, n=7%,dimg, r=dimg
® automorphic dilations d;: Stlg, = thidg,,
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Heisenberg group H; = R, x R, x R,
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* (yu) (Xy ) =(x+ Xy +y utd + (' = yxX)/2)
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Heisenberg group H; = R, x R, x R,
* (yu) (Xy ) =(x+ Xy +y utd + (' = yxX)/2)
* £ =—(X?4Y?), where X =0, —%0,, Y = 0, + 50,
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Heisenberg group H; = R, x R, x R,
* (yu) (Xy ) =(x+ Xy +y utd + (' = yxX)/2)
* L =—(X>+Y?), where X =0, %0, Y =0, +3%0,, [X,Y]=20,
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«(2) = .nf{s ER :VF : [|F(D)llpssie < G sup,og HF(r-)XHLg} Neemandar
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® ¢(Z) < (Qgliobal + 1)/2 under doubling condition and Gaussian-type heat
kernel bounds (Alexopoulos '95, Hebisch '95, Duong&Ouhabaz&Sikora '02)
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¢(Z) < n/2 for dist. sub-Laplacians on complex and quaternionic spheres
(Cowling&Sikora '01, Cowling&Klima&Sikora '11, Casarino&Cowling&M.&Sikora '17,
Ahrens& Cowling&M.&Miiller '19)
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kernel bounds (Alexopoulos '95, Hebisch '95, Duong&Ouhabaz&Sikora '02)

® () < Q/2 for homog. sub-Laplacians on stratified groups
(Mauceri&Meda '90, Christ '91)

® () < n/2 for homog. sub-Laplacians on Heisenberg-type groups
(Hebisch '93, Miiller&Stein '94)

® Miyachi—Peral estimates for v > (n — 1)|1/2 — 1/p| on Heisenberg-type
groups (Miiller&Stein '99, Miiller&Seeger '15)

® ((¥) < Q/2 for homog. sub-Laplacians on 2-step stratified groups and
¢(Z) < n/2 on 2-step groups with n <7 or dim gz < 2 (M.&Miiller '13-'16)

® () < n/2 for dist. sub-Laplacians on complex and quaternionic spheres
(Cowling&Sikora '01, Cowling&Klima&Sikora '11, Casarino&Cowling&M.&Sikora '17,
Ahrens& Cowling&M.&Miiller '19)

® ¢(.Z) < n/2 for various classes of Baouendi—Grushin operators
(M.&Sikora '12, Chen&Sikora '13, M.&Miiller '14, Casarino&Ciatti&M. '19),
also for higher step and perturbation of coefficients (Dall’Ara&M. '19)

® (.Z) > r/2 by transplantation to Euclidean space
® ¢(.Z) > n/2 on Heisenberg groups (Miiller&Stein '94)
® (Z) > n/2 on 2-step groups (M.&Miiller, GAFA '16)
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® M n-manifold with smooth measure p
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o ¥ = H(x, D)+ first order terms
® nonnegative selfadjoint second-order differential operator on M
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o ¥ = H(x, D)+ first order terms

® nonnegative selfadjoint second-order differential operator on M
® satisfying Hormander's condition at a point xp € M
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® M n-manifold with smooth measure p
® ¥ = H(x, D)+ first order terms

® nonnegative selfadjoint second-order differential operator on M
® satisfying Hormander's condition at a point xp € M

Theorem 1 (M. & Miiller & Nicolussi Golo, arXiv:1812.02671)

If, for some p € [1,00] and s > 0, the estimate

IF(L)lp—p S sup 1 F(t) xlleee
>0

holds for all F € S(R), then s > n|1/2—1/p|.
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® M n-manifold with smooth measure p
® ¥ = H(x, D)+ first order terms

® nonnegative selfadjoint second-order differential operator on M
® satisfying Hormander's condition at a point xp € M

Theorem 1 (M. & Miiller & Nicolussi Golo, arXiv:1812.02671)

If, for some p € [1,00] and s > 0, the estimate

IF(L)lp—p S sup 1 F(t) xlleee
>0

holds for all F € S(R), then s > n|1/2—1/p|. In particular, ¢(.Z) > n/2.

Theorem 2 (M. & Miiller & Nicolussi Golo, arXiv:1812.02671)

If, for some p € [1,00] and « > 0, the estimate

(1 + tzj)ia/z Cos(t\/g)”p—m S1

holds for all small ¢, then & > (n—1)|1/2 —1/p|.

® x € C°((0,00)) nontrivial cutoff
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® M n-manifold with smooth measure p
® ¥ = H(x, D)+ first order terms

® nonnegative selfadjoint second-order differential operator on M
® satisfying Hormander's condition at a point xp € M

Theorem 1 (M. & Miiller & Nicolussi Golo, arXiv:1812.02671)

If, for some p € [1,00] and s > 0, the estimate

IF(L)lp—p S sup 1 F(t) xlleee
>0

holds for all F € S(R), then s > n|1/2—1/p|. In particular, ¢(.Z) > n/2.

Theorem 2 (M. & Miiller & Nicolussi Golo, arXiv:1812.02671)

If, for some p € [1,00] and « > 0, the estimate

HX(f\/E/)\)cos(t\/,,?)Hp_m < \@

holds for all small ¢ and large A, then oo > (n—1)|1/2 — 1/p|.

® x € C°((0,00)) nontrivial cutoff
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FIO representation of the wave propagator
for elliptic £ = H(x, D) + first order terms

® |ocally and for small times,
cos(tV.Z) = Q(t) + Q(—t) + smoothing,
where
QO)F(x) = [ €779 gt x,,) Fly) dy e
and the phase function ¢ satisfies the eikonal equation

Orp = VH(x, xd)

Alessio Martini (Birmingham) Sub-Riemannian Wave Equation

(E)



FIO representation of the wave propagator
for elliptic £ = H(x, D) + first order terms

® Jocally and for small times,
cos(tVZ) = Q(t) + Q(—t) + smoothing,
where
QO)F(x) = [ €779 gt x,,) Fly) dy e
and the phase function ¢ satisfies the eikonal equation
dep = VH(x, 0x)
® (Hérmander '68) we can choose a phase function of the form
B(t,%,y,€) = @(x,y,€) + tVH(y, €)
with o(x,y,€) = &+ (x = y) + O(Ix — y|*[€])
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for elliptic £ = H(x, D) + first order terms

® |ocally and for small times,
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and the phase function ¢ satisfies the eikonal equation
Oep = VH(x,0x)
® (Hérmander '68) we can choose a phase function of the form
o(t,x,y,6) = o(x,y,€) + tVH(y,€)
with o(x,y, &) = € - (x — y) + O(|x — y[*[¢]), whence
H(x,-) nondegenerate —> rkag\/ﬁ =n-1
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with o(x,y, &) = € - (x — y) + O(|x — y[*[¢]), whence
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= 1tk ;¢ = n— 1 at critical points
= ‘“stationary phase” applies as on R”
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® Jocally and for small times,
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= ‘“stationary phase” applies as on R”

(E)

® when .Z is not elliptic:
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® when .Z is not elliptic:
® \/H not smooth for £ # 0
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® Jocally and for small times,
cos(tVZ) = Q(t) + Q(—t) + smoothing,
where
QO)F(x) = [ €779 gt x,,) Fly) dy e
and the phase function ¢ satisfies the eikonal equation
Orp = VH(x, xd)
® (Hérmander '68) we can choose a phase function of the form
o(t,x,y,6) = o(x,y,€) + tVH(y,€)
with o(x,y, &) = € - (x — y) + O(|x — y[*[¢]), whence
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= ‘“stationary phase” applies as on R”

(E)

® when .Z is not elliptic:
® /H not smooth for £ # 0 ~= obstruction for the solution of (E)
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for elliptic £ = H(x, D) + first order terms

® Jocally and for small times,
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where
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for elliptic £ = H(x, D) + first order terms

® Jocally and for small times,
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where
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® when .Z is not elliptic:
® /H not smooth for £ # 0 ~~ obstruction for the solution of

Oedp = VH(x, ) (E)

® 7 degenerate ~~ not clear why rk 8§¢ = n — 1 at critical points
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® when .Z is not elliptic:
® /H not smooth for £ # 0 ~~ obstruction for the solution of

Oedp = VH(x, ) (E)

® 7 degenerate ~~ not clear why rk 8§¢ = n — 1 at critical points

® by microlocalising off a conic neighbourhood of {# = 0}, we avoid the
region where v/H is not smooth
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® when .Z is not elliptic:
® /H not smooth for £ # 0 ~~ obstruction for the solution of
Oed = VH(x, 0x0) (E)

® 7 degenerate ~~ not clear why rk 8§¢ = n — 1 at critical points

® by microlocalising off a conic neighbourhood of {# = 0}, we avoid the
region where v/H is not smooth

® (Treves) we can find a solution of (E) of the form

¢(t7X7y7£):W(t7X7§)_y'£7 W(07X7£):X'§
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® when .Z is not elliptic:
® /H not smooth for £ # 0 ~~ obstruction for the solution of
detd = VH(x, 0xp)

® 7 degenerate ~~ not clear why rk 8§¢ = n — 1 at critical points

® by microlocalising off a conic neighbourhood of {# = 0}, we avoid the
region where v/H is not smooth

® (Treves) we can find a solution of (E) of the form
¢(t7X7y7£):W(t7X7§)_y'£7 W(07X7£):X'§

® explicit formula in terms of the Hamiltonian flow of H
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when Z is not elliptic:
® /H not smooth for £ # 0 ~~ obstruction for the solution of

drp = VH(x, xd)

® 7 degenerate ~~ not clear why rk aggzﬁ = n — 1 at critical points

by microlocalising off a conic neighbourhood of {H = 0}, we avoid the
region where v/H is not smooth

(Treves) we can find a solution of (E) of the form
¢(t7X7y7£):W(t7X7§)_y"£7 W(07X7£):X'§
® explicit formula in terms of the Hamiltonian flow of H
by solving transport equations, this yields, locally and for small times,

cos(tvVZ)P = Q(t) + Q(—t) + smoothing
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® Q is a FIO with phase function ¢,
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® Q is a FIO with phase function ¢,
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when Z is not elliptic:
® /H not smooth for £ # 0 ~~ obstruction for the solution of

drp = VH(x, xd)

® 7 degenerate ~~ not clear why rk 8§¢ = n — 1 at critical points
by microlocalising off a conic neighbourhood of {H = 0}, we avoid the
region where v/# is not smooth
(Treves) we can find a solution of (E) of the form

o(t,x,y,8) =w(t,x,§) —y-&  w(0,x,§) =x-§
® explicit formula in terms of the Hamiltonian flow of H
by solving transport equations, this yields, locally and for small times,
cos(tvVZ)P = Q(t) + Q(—t) + smoothing
® Q is a FIO with phase function ¢,
® P |ocalises frequencies to a conic region inside {H # 0}
for this phase function we can prove:
® 0c(t,x,y,6) =0 < x =Exp/*(tf), é=-_=&

2/ H(y,€)
° Exp;{ : T)M — M exponential map for the Hamiltonian flow of H
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when Z is not elliptic:
® /H not smooth for £ # 0 ~~ obstruction for the solution of

drp = VH(x, xd)

® 7 degenerate ~~ not clear why rk 8§¢ = n — 1 at critical points
by microlocalising off a conic neighbourhood of {H = 0}, we avoid the
region where v/# is not smooth
(Treves) we can find a solution of (E) of the form

o(t,x,y,8) =w(t,x,§) —y-&  w(0,x,§) =x-§
® explicit formula in terms of the Hamiltonian flow of H
by solving transport equations, this yields, locally and for small times,
cos(tvVZ)P = Q(t) + Q(—t) + smoothing
® Q is a FIO with phase function ¢,
® P |ocalises frequencies to a conic region inside {H # 0}
for this phase function we can prove:
® 0c(t,x,y,6) =0 < x =Exp/*(tf), é=-_=&

2/ H(y,€)
° Exp;{ : T)M — M exponential map for the Hamiltonian flow of H

o tk26(t, x,y,€) =1k [(DExpjﬂtg)\v5 at critical points and t # 0
® V¢ = ker(DH(y,)|¢) is a 1-codimensional subspace of T M
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when Z is not elliptic:
® /H not smooth for £ # 0 ~~ obstruction for the solution of

drp = VH(x, xd)

® 7 degenerate ~~ not clear why rk 8§¢ = n — 1 at critical points
by microlocalising off a conic neighbourhood of {H = 0}, we avoid the
region where v/# is not smooth
(Treves) we can find a solution of (E) of the form

¢(t7X7y7£):W(t7X7§)_y'£7 W(07X7£):X'§
® explicit formula in terms of the Hamiltonian flow of H

by solving transport equations, this yields, locally and for small times,
cos(tvV.ZL)P = Q(t) + Q(—t) + smoothing
® Q is a FIO with phase function ¢,
® P |ocalises frequencies to a conic region inside {H # 0}
for this phase function we can prove:
° 8§¢(tvxv)/7§):0 — X:EXP;{(t‘g)' é:_z\/%
° Exp;{ : T)M — M exponential map for the Hamiltonian flow of H
o tk26(t, x,y,€) =1k [(DExpjﬂtg)\v5 at critical points and t # 0
® Vg = ker(DH(y,)|¢) is a 1-codimensional subspace of T M
® in particular, DExpz,"\té nondegenerate = rk 6§¢ =n-1

Alessio Martini (Birmingham) Sub-Riemannian Wave Equation




® for this phase function we can prove:

® edlt,x,y,6) =0 = x=Exp}'(tl), &=- £

* tkRZg(t, x,y,&) = rk[(DExpzf\té)\VJ at critical points and t # 0
® Vi = ker(DH(y,")l¢) is a 1-codimensional subspace of T;M
® in particular, DExpj,"\té nondegenerate —> rk 8§¢ =n—-1

Alessio Martini (Birmingham) Sub-Riemannian Wave Equation



® for this phase function we can prove:

® edlt,x,y,6) =0 = x=Exp}'(tl), &=- £

* tkRZg(t, x,y,&) = rk[(DExpzf\té)\VJ at critical points and t # 0
® Vi = ker(DH(y,")l¢) is a 1-codimensional subspace of T;M
® in particular, DExpj,"\té nondegenerate —> rk a§¢ =n-—1

® how to ensure that DExp;"|5 is nondegenerate for some 0 # £ € T, M?
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® for this phase function we can prove:
° 3ng5(t,x,y,f):0 — XiEXp;-‘(tg), ézfﬁw
* tkRZg(t, x,y,&) = rk[(DExp;{\té)\VJ at critical points and t # 0

® Vi = ker(DH(y,")l¢) is a 1-codimensional subspace of T;M
® in particular, DExpj,"\té nondegenerate —> rk a§¢ =n—-1

® how to ensure that DExp;'L|5 is nondegenerate for some 0 # £ € T, M?

® in the elliptic case, DExpjﬂg is nondegenerate,
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® for this phase function we can prove:
° 3ng5(t,x,y,§):0 — XiEXp;-‘(tg), ézfﬁw
* tkRZg(t, x,y,&) = rk[(DExpy\té)\\/& at critical points and t # 0

® Vi = ker(DH(y,")l¢) is a 1-codimensional subspace of T;M
® in particular, DExpj,"\té nondegenerate —> rk a§¢ =n—-1

® how to ensure that DExp;'L|5 is nondegenerate for some 0 # £ € T, M?

® in the elliptic case, DExpjﬂg is nondegenerate,
hence DExp;"\g is nondegenerate for all small £
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® for this phase function we can prove:

® 0eh(t,x,y,6) =0 = x=Exp}(t€), &=-

* tkRZg(t, x,y,&) = rk[(DExpy\té)\\/E at critical points and t # 0
® Vi = ker(DH(y,")l¢) is a 1-codimensional subspace of T;M
® in particular, DExpj,"\té nondegenerate = rk a§¢ =n-1
® how to ensure that DExp;'L|5 is nondegenerate for some 0 # £ € T, M?
® in the elliptic case, DExpjﬂg is nondegenerate,
hence DExp;"\g is nondegenerate for all small £
® in the nonelliptic case, however, DExp7|o is degenerate,
since im DExp;"‘\o =HM
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® for this phase function we can prove:

® 0eh(t,x,y,6) =0 = x=Exp}(t€), &=-

* tkRZg(t, x,y,&) = rk[(DExpy\té)\\/& at critical points and t # 0
® Vi = ker(DH(y,")l¢) is a 1-codimensional subspace of T;M
® in particular, DExpj,"\té nondegenerate —> rk 8§¢ =n-—1
® how to ensure that DExp;'L|5 is nondegenerate for some 0 # £ € T, M?

® in the elliptic case, DExpjﬂg is nondegenerate,
hence DExp;"\g is nondegenerate for all small £

® in the nonelliptic case, however, DExp7|o is degenerate,
since im DExp;"‘\o =HM

® we must exploit the bracket-generating condition
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® for this phase function we can prove:

® edlt,x,y,6) =0 = x=Exp}'(tl), &=- £

* tkRZg(t, x,y,&) = rk[(DExpy\té)\\/& at critical points and t # 0
® Vi = ker(DH(y,")l¢) is a 1-codimensional subspace of T;M
® in particular, DExpj,"\té nondegenerate —> rk 8§¢ =n-—1

® how to ensure that DExp;'L|5 is nondegenerate for some 0 # £ € T, M?

® in the elliptic case, DExpjﬂg is nondegenerate,
hence DExp;"\g is nondegenerate for all small £
® in the nonelliptic case, however, DExp7|o is degenerate,
since im DExp;"‘\o =HM
® we must exploit the bracket-generating condition
Theorem (Agrachev '09)

On an equiregular analytic sub-Riemannian manifold (M, ?H), the differential
DExp;"|§ of the exponential map is nondegenerate for generic £ € T, M.

Alessio Martini (Birmingham) Sub-Riemannian Wave Equation



® for this phase function we can prove:

® 0eh(t,x,y,6) =0 = x=Exp}(t€), &=-

* tkRZg(t, x,y,&) = rk[(DExpy\té)\\/& at critical points and t # 0
® Vi = ker(DH(y,")l¢) is a 1-codimensional subspace of T;M
® in particular, DExpj,"\té nondegenerate —> rk 8§¢ =n-—1
® how to ensure that DExp;'L|5 is nondegenerate for some 0 # £ € T, M?

® in the elliptic case, DExpjﬂg is nondegenerate,
hence DExp;"\g is nondegenerate for all small £
® in the nonelliptic case, however, DExp7|o is degenerate,
since im DExp;"‘\o =HM
® we must exploit the bracket-generating condition
Theorem (Agrachev '09)

On an equiregular analytic sub-Riemannian manifold (M, ?H), the differential
DExp;"|§ of the exponential map is nondegenerate for generic £ € T, M.

® proof based on Sard’s theorem and Chow'’s result
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® proof based on Sard’s theorem and Chow'’s result
® N.B.: in step 3 or higher, not all length-minimisers come from Exp (!)
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® in the nonelliptic case, however, DExp7|o is degenerate,
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® we must exploit the bracket-generating condition
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On an equiregular analytic sub-Riemannian manifold (M, ?H), the differential
DExp;"|§ of the exponential map is nondegenerate for generic £ € T, M.

® proof based on Sard’s theorem and Chow'’s result
® N.B.: in step 3 or higher, not all length-minimisers come from Exp (!)

® combining all the above proves the stated necessary conditions for (MH) and
(MP) for stratified Lie groups and homogeneous sub-Laplacians

® the general case follows by “nonisotropic transplantation” (M. '17)
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