
Parabolic operators with Gaussian bounds
Wiener criteria

Proof and applications

Wiener-type characterization of boundary
regularity via Gaussian bounds

Giulio Tralli,
Università di Padova

Dispersive and subelliptic PDEs

Centro di Ricerca Matematica E. De Giorgi

February 10, 2020, Pisa

Dispersive and subelliptic PDEs Wiener-type characterization via Gaussian bounds



Parabolic operators with Gaussian bounds
Wiener criteria

Proof and applications

INDEX

Description of the class of operators

Wiener and Wiener-Landis criteria: literature and main result

Sketch of the proof and applications

joint work with F. Uguzzoni (Bologna),
appeared in J. Funct. Anal. 278 (2020), article n. 108410

Dispersive and subelliptic PDEs Wiener-type characterization via Gaussian bounds



Parabolic operators with Gaussian bounds
Wiener criteria

Proof and applications

INDEX

Description of the class of operators

Wiener and Wiener-Landis criteria: literature and main result

Sketch of the proof and applications

joint work with F. Uguzzoni (Bologna),
appeared in J. Funct. Anal. 278 (2020), article n. 108410

Dispersive and subelliptic PDEs Wiener-type characterization via Gaussian bounds



Parabolic operators with Gaussian bounds
Wiener criteria

Proof and applications

INDEX

Description of the class of operators

Wiener and Wiener-Landis criteria: literature and main result

Sketch of the proof and applications

joint work with F. Uguzzoni (Bologna),
appeared in J. Funct. Anal. 278 (2020), article n. 108410

Dispersive and subelliptic PDEs Wiener-type characterization via Gaussian bounds



Parabolic operators with Gaussian bounds
Wiener criteria

Proof and applications

INDEX

Description of the class of operators

Wiener and Wiener-Landis criteria: literature and main result

Sketch of the proof and applications

joint work with F. Uguzzoni (Bologna),
appeared in J. Funct. Anal. 278 (2020), article n. 108410

Dispersive and subelliptic PDEs Wiener-type characterization via Gaussian bounds



Parabolic operators with Gaussian bounds
Wiener criteria

Proof and applications

Looking for Wiener criteria

The aim of this research is to establish Wiener-type criteria for
evolution operators such as

m∑
j=1

X 2
j − ∂t

where Xj are smooth vector fields in RN satisfying the Hörmander
condition.

More generally, consider the following linear second order operator

H =
N∑

i,j=1

qi,j(z)∂2
xi ,xj +

N∑
k=1

qk(z)∂xk − ∂t ,

defined in the strip of RN+1

S = {z = (x , t) : x ∈ RN , T1 < t < T2}, −∞ ≤ T1 < T2 ≤ +∞.
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Assumptions:

- the coefficients qi,j = qj,i , qk are of class C∞;

- the quadratic form qH(z , ξ) =
∑N

i,j=1 qi,j(z)ξiξj is

nonnegative definite, i.e. qH(z , ·) ≥ 0 for every z ∈ S ,

and not totally degenerate, i.e. qH(z , ·) 6≡ 0 for every z ∈ S ;

- H and its adjoint H∗ are C∞-hypoelliptic;

- there exists a global fundamental solution (z , ζ) 7→ Γ(z , ζ) smooth
out of the diagonal of S × S
(in the sense Γ ∈ L1

loc, H(Γ(·, ζ)) = −δζ for any ζ, and∫
RN

Γ(x , t, ξ, τ)ϕ(ξ) dξ → ϕ(x0)

as x → x0 and t ↘ τ ∈]T1,T2[ (or τ ↗ t ∈]T1,T2[), for every
ϕ ∈ C0(RN) and for every x0 ∈ RN).
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MAIN ASSUMPTION:

Given a metric d : RN ×RN → R, we call d-Gaussian (of exponent a > 0)
any function

Ga(z , ζ) = Ga(x , t, ξ, τ) =

{
0 if t ≤ τ,

1
|Bd (x,

√
t−τ)| exp

(
−a d2(x,ξ)

t−τ

)
if t > τ.

We assume the existence of a distance d in RN such that the following
Gaussian estimates for Γ hold

(H) 1
ΛGb0 (z , ζ) ≤ Γ(z , ζ) ≤ ΛGa0 (z , ζ), ∀z , ζ ∈ S ,

for suitable positive constants a0, b0, and Λ.
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We shall make the following assumptions on the metric space (RN , d):

(D1) The d-topology is the Euclidean topology. Moreover (RN , d) is
complete and, for every fixed x ∈ RN , d(x , ξ)→∞ if and only if
|ξ| → ∞.

(D2) (RN , d) is doubling w.r.t. the Lebesgue measure, i.e. ∃cd > 1 such
that

|B(x , 2r)| ≤ cd |B(x , r)|, ∀x ∈ RN , ∀r > 0.

(D3) (RN , d) has the segment property, i.e., for every x , y ∈ RN there
exists a continuous path γ : [0, 1]→ RN such that γ(0) = x ,
γ(1) = y and

d(x , y) = d(x , γ(t)) + d(γ(t), y) ∀t ∈ [0, 1].
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The Hörmander case:

Our results apply in particular to degenerate parabolic operators of Hörman-
der type

m∑
i,j=1

ai,j(x , t)XiXj +
m∑

k=1

ak(x , t)Xk − ∂t

where X = {X1, . . . ,Xm} is a system of smooth vector fields satisfying the
Hörmander rank condition in RN , and A(z) = (ai,j) is uniformly positive
definite.

To see this, one should keep in mind that we want to study boundary
value problems in bounded open sets and we are not effected by large-scale
geometries.
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Under these assumptions, it is possible to develop a Potential Analysis for
H [Lanconelli-Uguzzoni 2010]:

the operator H endows the strip S with a structure of β-harmonic space
satisfying the Doob convergence property.

As a consequence, for any bounded open set Ω with Ω ⊆ S , the Dirichlet
problem {

Hu = 0 in Ω,

u|∂Ω = ϕ

has a generalized solution HΩ
ϕ , in the Perron-Wiener sense, for every

continuous function ϕ : ∂Ω→ R.
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Definition

Let Ω be a bounded open set with Ω ⊆ S . A point z0 ∈ ∂Ω is called
H-regular if

lim
Ω3z→z0

HΩ
ϕ (z) = ϕ(z0) for every ϕ ∈ C (∂Ω).

Wiener criteria are tests to prove or disprove regularity by checking whether
a suitable series (which classically involves capacitary terms) is divergent
or convergent.
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Classical Wiener criterion: Wiener (1924)

Consider ∆ in Rn ⊃⊃ Ω, x0 ∈ ∂Ω. For µ ∈]0, 1[, define

Ω∆
k (x0) =

(
B(x0, µ

k) r B(x0, µ
k+1)

)
r Ω.

Then

x0 is ∆− regular ⇔
∞∑
k=1

cap(Ω∆
k (x0))

µk(n−2)
= +∞
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Littman-Stampacchia-Weinberger (1963):

L = div(A(x)∇), A uniformly elliptic, in Rn ⊃⊃ Ω, x0 ∈ ∂Ω.

x0 is L− regular ⇔
∞∑
k=1

cap(Ω∆
k (x0))

µk(n−2)
= +∞

⇔ x0 is ∆− regular

There is a long literature around Wiener criteria for elliptic/degenerate-
elliptic operators.
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Heat equation: Lanconelli (1973) for ⇒, Evans-Gariepy (1982) for ⇐

Consider ∆− ∂t in Rn+1 ⊃⊃ Ω, z0 = (x0, t0) ∈ ∂Ω. For λ ∈ (0, 1), define

Ωk(z0) =

{
ζ /∈ Ω :

1

λk
≤ G (z0, ζ) ≤ 1

λk+1

}
.

Then,

z0 is (∆− ∂t)− regular ⇔
∞∑
k=1

cap(Ωk(z0))

λk
= +∞

.
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For any given a compact set F ⊂ Rn+1, one can define

cap(F ) = sup

{
µ(F ) : µ ∈M+(F ), and

Γ ∗ µ(z) :=

∫
Γ(z , ζ)dµ(ζ) ≤ 1 ∀z ∈ RN+1

}

Petrowsky 1935:
α 6= β, 0 < α, β

regularity for α∆− ∂t 6≡ regularity for β∆− ∂t
(⇒ holds whenever α < β)
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Variable coefficients case: Garofalo-Lanconelli (1988)

Consider
div(A(x , t)∇)− ∂t ,

A uniformly positive definite with smooth entries, in Rn+1 ⊃⊃ Ω,
z0 = (x0, t0) ∈ ∂Ω. For λ ∈ (0, 1), denote

ΩA
k (z0) =

{
ζ /∈ Ω :

1

λk
≤ ΓA(z0, ζ) ≤ 1

λk+1

}
.

Then,

z0 is (div(A(x , t)∇)−∂t)−regular ⇔
∞∑
k=1

cap(ΩA
k (z0))

λk
= +∞.

Degenerate-parabolic: Garofalo-Segala (1990) for the heat operator
in the Heisenberg group (Rotz (2016) for H-type groups)
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The Wiener criterion can also be read as follows:

consider the balayage VΩk (z0) of the compact sets Ωk(z0) and their Riesz-
measures µΩk (z0) (for which HVΩk (z0) = −µΩk (z0)), one has the represen-
tation

VΩk (z0) = Γ ∗ µΩk (z0).

Since µΩk (z0) (Ωk(z0)) ∼ cap(Ωk(z0)), one can see that

∞∑
k=1

cap(Ωk(z0))

λk
∼
∞∑
k=1

Γ ∗ µΩk (z0)(z0).
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Landis criterion for the Heat equation: Landis (1969)

Consider ∆ − ∂t in Rn+1 ⊃⊃ Ω, z0 = (x0, t0) ∈ ∂Ω. There exists a
sequence {α(k)}k∈N (growing fast at ∞) such that, if we define

Ωc
k(z0) =

{
ζ /∈ Ω :

(
1

λ

)α(k)

≤ G (z0, ζ) ≤
(

1

λ

)α(k+1)
}
,

we have

z0 is (∆− ∂t)− regular ⇔
∞∑
k=1

Γ ∗ µΩc
k (z0)(z0) = +∞.
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The Wiener criterion proved by Landis provides in fact a true
characterization for the regularity of boundary points. On the other
hand, if one tries to read it with respect to capacitary terms, one
recognizes that

∞∑
k=1

cap(Ωc
k(z0))

λα(k)
.
∞∑
k=1

Γ ∗ µΩc
k (z0)(z0) .

∞∑
k=1

cap(Ωc
k(z0)

λα(k+1)
.

This produces a mismatch between the necessary and the sufficient
condition (unless α(k) is linear).

We proved a Wiener-type characterization for the H-regularity of
boundary points in the spirit of the results by Landis. We also
established an explicit behavior for the sequence α(k).
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Let us fix

Ωc
k(z0) =

{
ζ /∈ Ω :

(
1

λ

)k log (k)

≤ Γ(z0, ζ) ≤
(

1

λ

)(k+1) log (k+1)
}
.

We have the following

Theorem [T. - Uguzzoni (2020)]

Let Ω be a bounded open set with Ω ⊆ S , and let z0 ∈ ∂Ω. Then

z0 is H− regular ⇔
∞∑
k=1

Γ ∗ µΩc
k (z0)(z0) = +∞.

Dispersive and subelliptic PDEs Wiener-type characterization via Gaussian bounds



Parabolic operators with Gaussian bounds
Wiener criteria

Proof and applications

Remarks on the proof

We followed a different strategy with respect to Landis.
Landis’ proof relied in fact on a control of the oscillation at the
boundary by making use of explicit barrier function.

We adopted the same strategy as in [Kogoj-Lanconelli-T., (2018)],
where we proved a Wiener-Landis test for Kolmogorov operator. In
that situation, the kernel Γ is known explicit, and it appeared there
the choice α(k) = k log (k).
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Applications
Let us apply the sufficient criterion in concrete situation. Consider

H0 = ∆G − ∂t ,

where G =
(
RN , ◦, δr

)
is a Carnot group. Let Q be the homogeneous

dimension, and d an homogeneous distance.

Corollary

Consider a bounded open set Ω in RN+1, and z0 ∈ ∂Ω. There exists a
positive constant C∗ = C∗(b0,Q) such that, if we have{

(x , t) ∈ RN+1 : d2(x , x0) ≥ C (t0 − t) log log

(
1

t0 − t

)
,

for t ∈
(
t0 −min{r2

0 , e
−1}, t0

)}
⊂ RN+1 r Ω

for some r0 > 0 and 0 < C < C∗, then the point z0 is H0-regular for ∂Ω.

Dispersive and subelliptic PDEs Wiener-type characterization via Gaussian bounds



Parabolic operators with Gaussian bounds
Wiener criteria

Proof and applications

Remarks

The stronger condition{
(x , t) ∈ RN+1 : d2(x , x0) ≥ C (t0 − t)

}
⊂ RN+1 r Ω

is a parabolic-cone condition: under this condition, the regularity of
z0 = (x0, t0) was known [Lanconelli-Uguzzoni (2010)], and also a
Cα-modulus of continuity for the solution ([Lanconelli-T.-Uguzzoni
(2017)]).

The log log-paraboloid condition is sharp in the following sense: for
the classical heat equation is known that the point is NOT regular
for a boundary ∂Ω with that log log-profile if C is big enough. This
is precisely the nature of Petrowski’s counterexamples.
We showed that

∞∑
k

Γ ∗ µΩc
k (z0)(z0) &

∞∑
k

1

α(k)
=
∞∑
k

1

k log k
.
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Thanks for the attention
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