Wiener-type characterization of boundary regularity via Gaussian bounds Giulio Tralli, Università di Padova

Dispersive and subelliptic PDEs Centro di Ricerca Matematica E. De Giorgi

February 10, 2020, Pisa

Description of the class of operators

- Wiener and Wiener-Landis criteria: literature and main result
- Sketch of the proof and applications

joint work with F. Uguzzoni (Bologna), appeared in J. Funct. Anal. 278 (2020), article n. 108410

4 E b

- Description of the class of operators
- Wiener and Wiener-Landis criteria: literature and main result

Sketch of the proof and applications

joint work with F. Uguzzoni (Bologna), appeared in J. Funct. Anal. 278 (2020), article n. 108410

< ⊒ ►

- Description of the class of operators
- Wiener and Wiener-Landis criteria: literature and main result
- Sketch of the proof and applications

joint work with F. Uguzzoni (Bologna), appeared in J. Funct. Anal. 278 (2020), article n. 108410

< ⊒ ►

- Description of the class of operators
- Wiener and Wiener-Landis criteria: literature and main result
- Sketch of the proof and applications

joint work with F. Uguzzoni (Bologna), appeared in J. Funct. Anal. 278 (2020), article n. 108410

4 E b

Parabolic operators with Gaussian bounds Wiener criteria Proof and applications

Looking for Wiener criteria

The aim of this research is to establish Wiener-type criteria for evolution operators such as

$$\sum_{j=1}^m X_j^2 - \partial_t$$

where X_j are smooth vector fields in \mathbb{R}^N satisfying the Hörmander condition.

More generally, consider the following linear second order operator

$$\mathcal{H} = \sum_{i,j=1}^N q_{i,j}(z) \partial_{\mathsf{x}_i,\mathsf{x}_j}^2 + \sum_{k=1}^N q_k(z) \partial_{\mathsf{x}_k} - \partial_t,$$

defined in the strip of \mathbb{R}^{N+1}

 $S = \{z = (x, t) : x \in \mathbb{R}^N, T_1 < t < T_2\}, -\infty \le T_1 < T_2 \le +\infty.$

Looking for Wiener criteria

The aim of this research is to establish Wiener-type criteria for evolution operators such as

$$\sum_{j=1}^m X_j^2 - \partial_t$$

where X_j are smooth vector fields in \mathbb{R}^N satisfying the Hörmander condition.

More generally, consider the following linear second order operator

$$\mathcal{H} = \sum_{i,j=1}^N q_{i,j}(z) \partial_{x_i,x_j}^2 + \sum_{k=1}^N q_k(z) \partial_{x_k} - \partial_t,$$

defined in the strip of $\mathbb{R}^{\textit{N}+1}$

$$S = \{ z = (x, t) : x \in \mathbb{R}^N, \ T_1 < t < T_2 \}, \ -\infty \le T_1 < T_2 \le +\infty.$$

Assumptions:

- the coefficients $q_{i,j} = q_{j,i}, q_k$ are of class C^{∞} ;
- the quadratic form $q_{\mathcal{H}}(z,\xi) = \sum_{i,j=1}^{N} q_{i,j}(z)\xi_i\xi_j$ is nonnegative definite, i.e. $q_{\mathcal{H}}(z,\cdot) \ge 0$ for every $z \in S$, and not totally degenerate, i.e. $q_{\mathcal{H}}(z,\cdot) \not\equiv 0$ for every $z \in S$;
- $\mathcal H$ and its adjoint $\mathcal H^*$ are $\mathcal C^\infty$ -hypoelliptic;
- there exists a global fundamental solution $(z, \zeta) \mapsto \Gamma(z, \zeta)$ smooth out of the diagonal of $S \times S$ (in the sense $\Gamma \in L^1_{loc}$, $\mathcal{H}(\Gamma(\cdot, \zeta)) = -\delta_{\zeta}$ for any ζ , and

$$\int_{\mathbb{R}^N} \Gamma(x, t, \xi, \tau) \, \varphi(\xi) \, d\xi \to \varphi(x_0)$$

as $x \to x_0$ and $t \searrow \tau \in]T_1, T_2[$ (or $\tau \nearrow t \in]T_1, T_2[$), for every $\varphi \in C_0(\mathbb{R}^N)$ and for every $x_0 \in \mathbb{R}^N$).

4 3 6 4 3 6 6 **6**

MAIN ASSUMPTION:

Given a metric $d : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$, we call *d*-Gaussian (of exponent a > 0) any function

$$\mathbb{G}_{a}(z,\zeta) = \mathbb{G}_{a}(x,t,\xi,\tau) = \begin{cases} 0 & \text{if } t \leq \tau, \\ \frac{1}{|B_{d}(x,\sqrt{t-\tau})|} \exp\left(-a\frac{d^{2}(x,\xi)}{t-\tau}\right) & \text{if } t > \tau. \end{cases}$$

We assume the existence of a distance d in \mathbb{R}^N such that the following Gaussian estimates for Γ hold

(H)
$$\frac{1}{\Lambda}\mathbb{G}_{b_0}(z,\zeta) \leq \Gamma(z,\zeta) \leq \Lambda\mathbb{G}_{a_0}(z,\zeta), \quad \forall z,\zeta \in S,$$

for suitable positive constants a_0 , b_0 , and Λ .

- A 🖻 🕨

Parabolic operators with Gaussian bounds Wiener criteria Proof and applications

We shall make the following assumptions on the metric space (\mathbb{R}^N, d) :

- (D1) The *d*-topology is the Euclidean topology. Moreover (\mathbb{R}^N, d) is complete and, for every fixed $x \in \mathbb{R}^N$, $d(x, \xi) \to \infty$ if and only if $|\xi| \to \infty$.
- (D2) (\mathbb{R}^N, d) is doubling w.r.t. the Lebesgue measure, i.e. $\exists c_d > 1$ such that

 $|B(x,2r)| \leq c_d |B(x,r)|, \quad \forall x \in \mathbb{R}^N, \ \forall r > 0.$

(D3) (\mathbb{R}^N, d) has the segment property, i.e., for every $x, y \in \mathbb{R}^N$ there exists a continuous path $\gamma : [0, 1] \to \mathbb{R}^N$ such that $\gamma(0) = x$, $\gamma(1) = y$ and

$$d(x,y) = d(x,\gamma(t)) + d(\gamma(t),y) \quad \forall t \in [0,1].$$

The Hörmander case:

Our results apply in particular to degenerate parabolic operators of Hörmander type

$$\sum_{i,j=1}^m \mathsf{a}_{i,j}(x,t) X_i X_j + \sum_{k=1}^m \mathsf{a}_k(x,t) X_k - \partial_t$$

where $\mathcal{X} = \{X_1, \ldots, X_m\}$ is a system of smooth vector fields satisfying the Hörmander rank condition in \mathbb{R}^N , and $A(z) = (a_{i,j})$ is uniformly positive definite.

To see this, one should keep in mind that we want to study boundary value problems in bounded open sets and we are not effected by large-scale geometries.

医下术 医下口

Under these assumptions, it is possible to develop a Potential Analysis for ${\cal H}$ [Lanconelli-Uguzzoni 2010]:

the operator \mathcal{H} endows the strip S with a structure of β -harmonic space satisfying the Doob convergence property.

As a consequence, for any bounded open set Ω with $\overline{\Omega} \subseteq S$, the Dirichlet problem

$$egin{cases} \mathcal{H}u=0 \ ext{in} \ \Omega, \ u|_{\partial\Omega}=arphi \end{cases}$$

has a generalized solution H^{Ω}_{φ} , in the Perron-Wiener sense, for every continuous function $\varphi: \partial\Omega \to \mathbb{R}$.

Definition

Let Ω be a bounded open set with $\overline{\Omega} \subseteq S$. A point $z_0 \in \partial \Omega$ is called \mathcal{H} -regular if

$$\lim_{\Omega \ni z \to z_0} H^\Omega_\varphi(z) = \varphi(z_0) \quad \textit{for every } \varphi \in C(\partial \Omega).$$

Wiener criteria are tests to prove or disprove regularity by checking whether a suitable series (which classically involves capacitary terms) is divergent or convergent.

< ∃ →

Classical Wiener criterion: Wiener (1924)

Consider Δ in $\mathbb{R}^n \supset \supset \Omega$, $x_0 \in \partial \Omega$. For $\mu \in]0, 1[$, define $\Omega_k^{\Delta}(x_0) = (B(x_0, \mu^k) \smallsetminus B(x_0, \mu^{k+1})) \smallsetminus \Omega.$

Then

$$x_0$$
 is Δ – regular $\Leftrightarrow \sum_{k=1}^{\infty} \frac{\operatorname{cap}(\Omega_k^{\Delta}(x_0))}{\mu^{k(n-2)}} = +\infty$

 \sim

. . . .

ヨト イヨト ヨー のへで

Littman-Stampacchia-Weinberger (1963):

$$L = \operatorname{div}(A(x)\nabla),$$
 A uniformly elliptic, in $\mathbb{R}^n \supset \supset \Omega$, $x_0 \in \partial \Omega$.

$$\begin{array}{lll} x_0 \ \ \text{is} \ \ L-\text{regular} & \Leftrightarrow & \sum_{k=1}^{\infty} \frac{\operatorname{cap}(\Omega_k^{\Delta}(x_0))}{\mu^{k(n-2)}} = +\infty \\ & \Leftrightarrow & x_0 \ \ \text{is} \ \ \Delta-\text{regular} \end{array}$$

There is a long literature around Wiener criteria for elliptic/degenerateelliptic operators.

医下颌 医下口

Heat equation: Lanconelli (1973) for \Rightarrow , Evans-Gariepy (1982) for \Leftarrow

Consider $\Delta - \partial_t$ in $\mathbb{R}^{n+1} \supset \Omega$, $z_0 = (x_0, t_0) \in \partial \Omega$. For $\lambda \in (0, 1)$, define

$$\Omega_k(z_0) = \left\{ \zeta \notin \Omega \, : \, rac{1}{\lambda^k} \leq G(z_0,\zeta) \leq rac{1}{\lambda^{k+1}}
ight\}.$$

Then,

.

$$z_0$$
 is $(\Delta - \partial_t) - ext{regular} \quad \Leftrightarrow \quad \sum_{k=1}^\infty rac{ ext{cap}(\Omega_k(z_0))}{\lambda^k} = +\infty$

 \sim

i - *i* . . .

ヨト イヨト ヨー のへで

For any given a compact set $F \subset \mathbb{R}^{n+1}$, one can define

$$\begin{split} \mathrm{cap}(F) &= \sup \left\{ \mu(F) \, : \, \mu \in \mathcal{M}^+(F), \text{ and} \right. \\ & \left. \Gamma * \mu(z) := \int \Gamma(z,\zeta) d\mu(\zeta) \leq 1 \quad \forall z \in \mathbb{R}^{N+1} \right\} \end{split}$$

Petrowsky 1935:

 $\alpha \neq \beta, \quad \mathbf{0} < \alpha, \beta$

regularity for $\alpha \Delta - \partial_t \equiv \beta \Delta - \partial_t$

 $(\Rightarrow$ holds whenever $\alpha < \beta$)

For any given a compact set $F \subset \mathbb{R}^{n+1}$, one can define

$$\begin{split} \mathrm{cap}(F) &= \sup \left\{ \mu(F) \, : \, \mu \in \mathcal{M}^+(F), \text{ and} \right. \\ & \left. \Gamma * \mu(z) := \int \Gamma(z,\zeta) d\mu(\zeta) \leq 1 \quad \forall z \in \mathbb{R}^{N+1} \right\} \end{split}$$

Petrowsky 1935:

 $\alpha \neq \beta, \quad 0 < \alpha, \beta$ regularity for $\alpha \Delta - \partial_t \quad \neq \quad \text{regularity for } \beta \Delta - \partial_t$ (\Rightarrow holds whenever $\alpha < \beta$)

Parabolic operators with Gaussian bounds Wiener criteria Proof and applications

<u>Variable coefficients case</u>: Garofalo-Lanconelli (1988) Consider

$$\operatorname{div}(A(x,t)\nabla) - \partial_t,$$

A uniformly positive definite with smooth entries, in $\mathbb{R}^{n+1} \supset \Omega$, $z_0 = (x_0, t_0) \in \partial \Omega$. For $\lambda \in (0, 1)$, denote

$$\Omega^{\mathcal{A}}_{k}(z_{0}) = \left\{ \zeta \notin \Omega \, : \, rac{1}{\lambda^{k}} \leq \Gamma^{\mathcal{A}}(z_{0},\zeta) \leq rac{1}{\lambda^{k+1}}
ight\}.$$

Then,

$$z_0$$
 is $(\operatorname{div}(A(x,t)
abla) - \partial_t) - \operatorname{regular} \quad \Leftrightarrow \quad \sum_{k=1}^\infty \frac{\operatorname{cap}(\Omega_k^A(z_0))}{\lambda^k} = +\infty.$

Degenerate-parabolic: Garofalo-Segala (1990) for the heat operator in the Heisenberg group (Rotz (2016) for H-type groups)

э

A 3 b

E >

Parabolic operators with Gaussian bounds Wiener criteria Proof and applications

<u>Variable coefficients case</u>: Garofalo-Lanconelli (1988) Consider

$$\operatorname{div}(A(x,t)\nabla) - \partial_t,$$

A uniformly positive definite with smooth entries, in $\mathbb{R}^{n+1} \supset \Omega$, $z_0 = (x_0, t_0) \in \partial \Omega$. For $\lambda \in (0, 1)$, denote

$$\Omega_k^{\mathcal{A}}(z_0) = \left\{ \zeta \notin \Omega \, : \, rac{1}{\lambda^k} \leq \Gamma^{\mathcal{A}}(z_0,\zeta) \leq rac{1}{\lambda^{k+1}}
ight\}.$$

Then,

$$z_0$$
 is $(\operatorname{div}(A(x,t)
abla) - \partial_t) - \operatorname{regular} \quad \Leftrightarrow \quad \sum_{k=1}^\infty rac{\operatorname{cap}(\Omega^A_k(z_0))}{\lambda^k} = +\infty.$

Degenerate-parabolic: Garofalo-Segala (1990) for the heat operator in the Heisenberg group (Rotz (2016) for H-type groups)

< 注→ 注

The Wiener criterion can also be read as follows:

consider the balayage $V_{\Omega_k(z_0)}$ of the compact sets $\Omega_k(z_0)$ and their Rieszmeasures $\mu_{\Omega_k(z_0)}$ (for which $\mathcal{H}V_{\Omega_k(z_0)} = -\mu_{\Omega_k(z_0)}$), one has the representation

$$\mathcal{V}_{\Omega_k(z_0)} = \mathsf{\Gamma} * \mu_{\Omega_k(z_0)}.$$

Since $\mu_{\Omega_k(z_0)}(\Omega_k(z_0)) \sim \operatorname{cap}(\Omega_k(z_0))$, one can see that

$$\sum_{k=1}^{\infty} \frac{\operatorname{cap}(\Omega_k(z_0))}{\lambda^k} \sim \sum_{k=1}^{\infty} \mathsf{\Gamma} * \mu_{\Omega_k(z_0)}(z_0).$$

글 🖌 🖌 글 🕨 👘

Landis criterion for the Heat equation: Landis (1969)

Consider $\Delta - \partial_t$ in $\mathbb{R}^{n+1} \supset \Omega$, $z_0 = (x_0, t_0) \in \partial\Omega$. There exists a sequence $\{\alpha(k)\}_{k \in \mathbb{N}}$ (growing fast at ∞) such that, if we define

$$\Omega_k^c(z_0) = \left\{ \zeta \notin \Omega \, : \, \left(rac{1}{\lambda}
ight)^{lpha(k)} \leq G(z_0,\zeta) \leq \left(rac{1}{\lambda}
ight)^{lpha(k+1)}
ight\},$$

we have

$$z_0$$
 is $(\Delta - \partial_t) - \operatorname{regular} \quad \Leftrightarrow \quad \sum_{k=1}^{\infty} \Gamma * \mu_{\Omega_k^c(z_0)}(z_0) = +\infty.$

ヨト イヨト ヨー のへで

 ∞

The Wiener criterion proved by Landis provides in fact a true characterization for the regularity of boundary points. On the other hand, if one tries to read it with respect to capacitary terms, one recognizes that

$$\sum_{k=1}^\infty rac{ ext{cap}(\Omega_k^c(z_0))}{\lambda^{lpha(k)}} \lesssim \sum_{k=1}^\infty \mathsf{\Gamma} st \mu_{\Omega_k^c(z_0)}(z_0) \lesssim \sum_{k=1}^\infty rac{ ext{cap}(\Omega_k^c(z_0))}{\lambda^{lpha(k+1)}}.$$

This produces a mismatch between the necessary and the sufficient condition (unless $\alpha(k)$ is linear).

We proved a Wiener-type characterization for the \mathcal{H} -regularity of boundary points in the spirit of the results by Landis. We also established an explicit behavior for the sequence $\alpha(k)$.

The Wiener criterion proved by Landis provides in fact a true characterization for the regularity of boundary points. On the other hand, if one tries to read it with respect to capacitary terms, one recognizes that

$$\sum_{k=1}^\infty rac{ ext{cap}(\Omega_k^c(z_0))}{\lambda^{lpha(k)}} \lesssim \sum_{k=1}^\infty \mathsf{\Gamma} st \mu_{\Omega_k^c(z_0)}(z_0) \lesssim \sum_{k=1}^\infty rac{ ext{cap}(\Omega_k^c(z_0))}{\lambda^{lpha(k+1)}}.$$

This produces a mismatch between the necessary and the sufficient condition (unless $\alpha(k)$ is linear).

We proved a Wiener-type characterization for the \mathcal{H} -regularity of boundary points in the spirit of the results by Landis. We also established an explicit behavior for the sequence $\alpha(k)$.

Let us fix

$$\Omega_k^c(z_0) = \left\{ \zeta \notin \Omega \ : \ \left(\frac{1}{\lambda}\right)^{k \log(k)} \leq \Gamma(z_0,\zeta) \leq \left(\frac{1}{\lambda}\right)^{(k+1) \log(k+1)} \right\}$$

٠

医下颌 医下口

э

We have the following

Theorem [T. - Uguzzoni (2020)]

Let Ω be a bounded open set with $\overline{\Omega} \subseteq S$, and let $z_0 \in \partial \Omega$. Then

$$z_0 \text{ is } \mathcal{H}-\text{regular} \quad \Leftrightarrow \quad \sum_{k=1}^{\infty} \Gamma * \mu_{\Omega_k^c(z_0)}(z_0) = +\infty.$$

Remarks on the proof

We followed a different strategy with respect to Landis. Landis' proof relied in fact on a control of the oscillation at the boundary by making use of explicit barrier function.

We adopted the same strategy as in [Kogoj-Lanconelli-T., (2018)], where we proved a Wiener-Landis test for Kolmogorov operator. In that situation, the kernel Γ is known explicit, and it appeared there the choice $\alpha(k) = k \log(k)$.

Remarks on the proof

We followed a different strategy with respect to Landis. Landis' proof relied in fact on a control of the oscillation at the boundary by making use of explicit barrier function.

We adopted the same strategy as in [Kogoj-Lanconelli-T., (2018)], where we proved a Wiener-Landis test for Kolmogorov operator. In that situation, the kernel Γ is known explicit, and it appeared there the choice $\alpha(k) = k \log (k)$.

Applications

Let us apply the sufficient criterion in concrete situation. Consider

$$\mathcal{H}_0 = \Delta_{\mathbb{G}} - \partial_t,$$

where $\mathbb{G} = (\mathbb{R}^N, \circ, \delta_r)$ is a Carnot group. Let Q be the homogeneous dimension, and d an homogeneous distance.

Corollary

Consider a bounded open set Ω in \mathbb{R}^{N+1} , and $z_0 \in \partial \Omega$. There exists a positive constant $C^* = C^*(b_0, Q)$ such that, if we have

$$igg\{(x,t)\in\mathbb{R}^{N+1}\,:\,d^2(x,x_0)\geq C(t_0-t)\log\log\left(rac{1}{t_0-t}
ight),$$
 for $t\inig(t_0-\min\{r_0^2,e^{-1}\},t_0ig)igg\}\subset\mathbb{R}^{N+1}\smallsetminus\Omega$

for some $r_0 > 0$ and $0 < C < C^*$, then the point z_0 is \mathcal{H}_0 -regular for $\partial \Omega$.

Remarks

The stronger condition

$$\left\{(x,t)\in\mathbb{R}^{N+1}\,:\,d^2(x,x_0)\geq C(t_0-t)
ight\}\subset\mathbb{R}^{N+1}\smallsetminus\Omega$$

is a parabolic-cone condition: under this condition, the regularity of $z_0 = (x_0, t_0)$ was known [Lanconelli-Uguzzoni (2010)], and also a C^{α} -modulus of continuity for the solution ([Lanconelli-T.-Uguzzoni (2017)]).

The log log-paraboloid condition is sharp in the following sense: for the classical heat equation is known that the point is NOT regular for a boundary $\partial \Omega$ with that log log-profile if *C* is big enough. This is precisely the nature of Petrowski's counterexamples. We showed that

$$\sum_{k}^{\infty} \Gamma * \mu_{\Omega_{k}^{c}(z_{0})}(z_{0}) \gtrsim \sum_{k}^{\infty} \frac{1}{\alpha(k)} = \sum_{k}^{\infty} \frac{1}{k \log k}.$$

글 > - - 글 >

Remarks

The stronger condition

$$\left\{(x,t)\in\mathbb{R}^{N+1}\,:\,d^2(x,x_0)\geq C(t_0-t)
ight\}\subset\mathbb{R}^{N+1}\smallsetminus\Omega$$

is a parabolic-cone condition: under this condition, the regularity of $z_0 = (x_0, t_0)$ was known [Lanconelli-Uguzzoni (2010)], and also a C^{α} -modulus of continuity for the solution ([Lanconelli-T.-Uguzzoni (2017)]).

The log log-paraboloid condition is sharp in the following sense: for the classical heat equation is known that the point is NOT regular for a boundary $\partial \Omega$ with that log log-profile if *C* is big enough. This is precisely the nature of Petrowski's counterexamples. We showed that

$$\sum_k^\infty \mathsf{\Gamma} st \mu_{\Omega_k^c(z_0)}(z_0) \gtrsim \sum_k^\infty rac{1}{lpha(k)} = \sum_k^\infty rac{1}{k\log k}.$$

Thanks for the attention

< ∃ →

Ξ.