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Introduction

It is known by the classical works of Matsumura (1976),
Todorova-Yordanov (2001) and Zhang (2001), that the critical exponent
of the Cauchy problem for the semilinear damped wave equation in the
Euclidean setting

utt −∆u + ut = |u|p, x ∈ Rn, t > 0,
u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn,

is the same one as for the semilinear heat equation, namely, the Fujita
exponent pFuj(n)

.
= 1 + 2/n. This is due to the presence of diffusion

phenomena among the corresponding linear equations.
In this talk we are going to focus on the analogous semilinear Cauchy
problem, but in the Heisenberg group, providing the corresponding
critical exponent.
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Short recap on Heisenberg group

The Heisenberg group is the Lie group R2n+1 = Hn endowed with the
multiplication law

(x , y , τ) ◦ (x ′, y ′, τ ′) = (x + x ′, y + y ′, τ + τ ′ + 1
2 (x · y ′ − y · y ′).

A system of left-invariant vector fields that span the lie algebra
hn = Lie(Hn) is given by

Xj
.

= ∂xj −
yj
2
∂τ , Yj

.
= ∂yj +

xj
2
∂τ , ∂τ (1 6 j 6 n)

so the Lie algebra admits the stratification hn = V1 ⊕ V2, where
V1

.
= span{Xj ,Yj}16j6n is the so-called horizontal layer and

V2
.

= span{∂τ}. The vector fields in V1 are called horizontal vector fields.

Therefore, Hn is a stratified Lie group of step 2 with homogeneous
dimension Q = 2n + 2.
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Let u ∈ C1(Hn), then the horizontal gradient of u is

∇Hu
.

=
n∑

j=1

(Xju)Xj + (Yju)Yj .

Let u ∈ C2(Hn), then the sub-Laplacian of u is

∆Hu
.

=
n∑

j=1

X 2
j u + Y 2

j u.

As in the Euclidean framework, we might introduce Xju and Yju in the
distributional sense by using C∞0 (Hn) functions. So, we shall consider as
Sobolev space

H1(Hn)
.

= {u ∈ L2(Hn) : Xju,Yju ∈ L2(Hn) for any j = 1, . . . , n}
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Our problem

We are going to investigate the Cauchy problem for the semilinear
damped wave equation in the Heisenberg group Hn, namely

utt −∆Hu + ut = |u|p, η ∈ Hn, t > 0,
u(0, x) = u0(x), η ∈ Hn,

ut(0, x) = u1(x), η ∈ Hn.

(CP)

We shall prove that the critical exponent for (CP) is the Fujita-type
exponent pFuj(Q) = 1 + 2/Q.

We point out that recently it has been proven even for the semilinear
heat equation in the Heisenberg group that pFuj(Q) is the critical
exponent by Ruzhansky-Yessirkegenov (in the more general frame of
unimodular Lie group with polynomial volume growth) and by Georgiev-P
(in the Heisenberg group with lifespan estimates in the subcritical and
critical cases).
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In order to show that pFuj(Q) is the critical exponent for (CP), we have
to show a blow-up result for 1 < p 6 pFuj(Q) and global existence result
for small data solutions for p > pFuj(Q).

The following blow-up result can be proved by using the so-called test
function method developed by Mitidieri-Pohozaev (and applied to the
semilinear damped wave model by Zhang). This method is based on a
scaling argument, so for the scaling in Heisenberg group we need to
employ the anisotropic dilations.
On the other hand, for the global existence result we will work with
exponentially weighted Sobolev spaces. In particular, the decay estimates
for the corresponding homogeneous problem are derived by using phase
space analysis in Hn.
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Blow-up result

Theorem
Let n ≥ 1. Let u0, u1 ∈ L1(Hn) such that

lim inf
R→∞

∫
DR

(
u0(η) + u1(η)

)
dη > 0,

where DR
.

= Bn(R)× Bn(R)× [−R2,R2].
Let us assume that u ∈ Lploc([0,T )× Rn) is a weak solution to (CP),
with lifespan T > 0. If 1 < p ≤ pFuj (Q), then T <∞, that is, the
solutions u blows up in finite time.
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Global existence result

Before stating the main result concerning the global existence of small
data solutions, we introduce the main tools that are used in the proof.

The first fundamental result for the proof (definition of the space for the
solution) is given by the following decay estimate for the homogeneous
Cauchy problem 

utt −∆Hu + ut = 0, η ∈ Hn, t > 0,
u(0, x) = u0(x), η ∈ Hn,

ut(0, x) = u1(x), η ∈ Hn.

(hCP)
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Theorem (Decay estimates)

Let us assume (u0, u1) ∈ (H1(Hn) ∩ L1(Hn))× (L2(Hn) ∩ L1(Hn)).
Let u ∈ C([0,∞),H1(Hn)) ∩ C1([0,∞), L2(Hn)) solve the Cauchy problem
(hCP). Then, the following decay estimates are satisfied

‖u(t, ·)‖L2(Hn) ≤ C(1 + t)−
Q
4 ‖(u0, u1)‖L1(Hn)∩L2(Hn)

‖∇Hu(t, ·)‖L2(Hn) ≤ C(1 + t)−
Q
4−

1
2 ‖(u0, u1)‖(H1(Hn)∩L1(Hn))×(L2(Hn)∩L1(Hn))

‖∂tu(t, ·)‖L2(Hn) ≤ C(1 + t)−
Q
4−1‖(u0, u1)‖(H1(Hn)∩L1(Hn))×(L2(Hn)∩L1(Hn))

for any t ≥ 0. Furthermore, if we assume just (u0, u1) ∈ H1(Hn)× L2(Hn),
that is, we do not require additional L1(Hn) regularity for the Cauchy data,
then the following estimates are satisfied

‖u(t, ·)‖L2(Hn) ≤ C‖(u0, u1)‖L2(Hn)

‖∇Hu(t, ·)‖L2(Hn) ≤ C(1 + t)−
1
2 ‖(u0, u1)‖H1(Hn)×L2(Hn)

‖∂tu(t, ·)‖L2(Hn) ≤ C(1 + t)−1‖(u0, u1)‖H1(Hn)×L2(Hn)

for any t ≥ 0. Here C > 0 is a universal constant.
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We underline that the previous decay estimates are completely analogous
to the ones derived in the Euclidean framework in the pioneering paper of
Matsumura (1976).

Another important tool that allows us to handle the nonlinear term is a
Gagliardo-Nirenberg type inequality in Hn:

Lemma (Gagliardo-Nirenberg inequality)

Let n ≥ 1. Let us consider 2 ≤ q ≤ 2 + 2
n = 2Q

Q−2 . Then, the following
Gagliardo-Nirenberg inequality holds

‖v‖Lq(Hn) ≤ C ‖∇Hv‖θ(q)
L2(Hn)‖v‖

1−θ(q)
L2(Hn)

for any v ∈ H1(Hn), where C is a nonnegative constant and θ(q) ∈ [0, 1]
is defined by

θ(q)
.

= Q
(

1
2 −

1
q

)
.
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If we worked only with the classical energy spaces (i.e. without
considering exponentially weighted Sobolev spaces), we would apply GN
inequality to estimate both the Lp(Hn)-norm of u and L2p(Hn)-norm of
u. But then we would have a not empty range for p only for n = 1
(furthermore, in this case the range for p is reduce to {2}).

Therefore, we introduce the Sobolev spaces L2 and H1 with exponential
weight eψ(t,·)

L2
ψ(t,·)(Hn)

.
= {v ∈ L2(Hn) : ‖eψ(t,·)v‖L2(Hn) <∞},

H1
ψ(t,·)(Hn)

.
= {v ∈ H1(Hn) : ‖eψ(t,·)v‖L2(Hn) + ‖eψ(t,·)∇Hv‖L2(Hn) <∞},

where

ψ(t, η)
.

=
|x |2 + |y |2 + 4|τ |

8(1 + t)
for any η = (x , y , τ) ∈ Hn.

In particular, as space for the Cauchy data we consider

A(Hn)
.

= H1
ψ(0,·)(Hn)× L2

ψ(0,·)(Hn).
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Fundamental properties of ψ

|∇Hψ(t, η)|2 + ψt(t, η) ≤ 0

∆Hψ(t, η) =
n

2(1 + t)
+
|x |2 + |y |2

4(1 + t)
δ0(τ)

for any t ≥ 0 and any η = (x , y , τ) ∈ Hn, where δ0(τ) denotes the Dirac
delta in 0 with respect to the τ variable.
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These properties of the function ψ(t, ·) are essential to prove the next
a-priori estimate.

Lemma
Let n ≥ 1 and p > 1 such that p 6 pGN(Q)

.
= Q

Q−2 .
Let (u0, u1) ∈ A(Hn). If u solves (hCP), then, the following energy
estimate holds for any t ∈ [0,T ) and for an arbitrary small δ > 0

Eψ[u](t) . Eψ[u](0) + Eψ[u](0)
p+1
2

+

(
sup

s∈[0,t]

(1 + s)δ‖e( 2
p+1 +δ)ψ(s,·)u(s, ·)‖Lp+1(Hn)

)p+1

,

where

Eψ[u](t)
.

=

∫
Hn

e2ψ(t,η)
(
|ut(t, η)|2 + |∇Hu(t, η)|2

)
dη.
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Now we can state the global existence result.

Theorem
Let n ≥ 1. Let us consider 1 < p 6 pGN(Q) such that p > pFuj (Q).
Then, there exists ε0 > 0 such that for any initial data

(u0, u1) ∈ A(Hn) satisfying ‖(u0, u1)‖A(Hn) 6 ε0

there is a unique solution
u ∈ C([0,∞),H1

ψ(t,·)(Hn)) ∩ C1([0,∞), L2
ψ(t,·)(Hn)) to the Cauchy

problem (CP). Moreover, u satisfies the following estimates

‖u(t, ·)‖L2(Hn) . (1 + t)−
Q
4 ‖(u0, u1)‖A(Hn),

‖∇Hu(t, ·)‖L2(Hn) . (1 + t)−
Q
4−

1
2 ‖(u0, u1)‖A(Hn),

‖ut(t, ·)‖L2(Hn) . (1 + t)−
Q
4−1‖(u0, u1)‖A(Hn),

‖eψ(t,·)∇Hu(t, ·)‖L2(Hn) . ‖(u0, u1)‖A(Hn),

‖eψ(t,·)ut(t, ·)‖L2(Hn) . ‖(u0, u1)‖A(Hn)

for any t ≥ 0.
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Decay Estimates for (hCP)

In this final part, we want to sketch the main ideas to prove the decay
estimates for the homogeneous problem (hCP). We follow the approach
introduced by Ruzhansky-Tokmagambetov (2018).

As we have already mentioned, the main tool to prove these estimates is
the Fourier group transform on Hn. We employ the following realization
of Schrödinger representations {πλ}λ∈R∗

πλ : Hn → U(L2(Rn))

πλ(x , y , τ)φ(w) = eiλ(τ+ 1
2 x·y)ei sign(λ)

√
|λ| y ·wφ

(
w +

√
|λ|x

)
for any λ ∈ R∗ .= R \ {0}, (x , y , τ) ∈ Hn, φ ∈ L2(Rn) and w ∈ Rn, where
U(L2(Rn)) ⊂ L(L2(Rn)→ L2(Rn)) is the set of unitary bounded
operators on L2(Rn) (cf. the monograph by Fisher-Ruzhansky, 2016).
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In the Heisenberg group we have an explicit description of the unitary
dual group (strongly continuous unitary representations up to
intertwining operators) Ĥn ' R∗ and of the Plancherel measure

dµ(πλ) = cn|λ|ndλ,

where cn
.

= (2π)−(3n+1) in this setting.

If v ∈ L1(Hn), the group Fourier transform of v̂ is the family of bounded
operators on L2(Rn)

v̂(λ)
.

=

∫
Hn

v(η)π∗λ(η) dη ∈ L(L2(Rn)→ L2(Rn)), λ ∈ R∗.

Since Schrödinger representation are unitary, we see immediately that

sup
λ∈R∗

‖v̂(λ)‖L(L2(Rn)→L2(Rn)) 6 ‖v‖L1(Hn).
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If v ∈ L2(Hn), then Plancherel formula holds

‖v‖2L2(Hn) = cn

∫
R∗
‖v̂(λ)‖2HS[L2(Rn)]|λ|

n dλ

= cn

∫
R∗

∑
k∈Nn

‖v̂(λ)ek‖2L2(Rn)|λ|
n dλ

= cn

∫
R∗

∑
k,`∈Nn

∣∣(v̂(λ)ek , e`
)
L2(Rn)

∣∣2|λ|n dλ,

where {ek}k∈Nn is the orthonormal basis of L2(Rn) given by Hermite
functions.

We chose {ek}k∈Nn as basis of L2(Rn) since its elements form a complete
system of eigenvalues for the harmonic oscillator Hw

.
= −∆ + |w |2 on Rn.
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Why is it important to “diagonalize” the harmonic oscillator? Because the
action of the infinitesimal representation of πλ on the sub-Laplacian is

dπλ(∆H) = −|λ|Hw .

This follows from the action of the infinitesimal representation of πλ on
the generators of the horizontal layer of hn

dπλ(Xj) =
√
|λ|∂wj ,

dπλ(Yj) = i sign(λ)
√
|λ|wj

for j = 1, . . . , n.
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After recalling all tools which are necessary to deal with the group
Fourier transform in our framework, we may finally sketch the strategy to
prove the decay estimates.

Let u be a solution of the homogeneous problem (hCP). Applying the
group Fourier transform (with respect to the spatial variable η) to (hCP)
we get an ODE with respect to t (depending on the parameter λ) in the
Banach space L(L2(Rn)→ L2(Rn))

∂2
t û(t, λ)− σ∆H

(λ)û(t, λ) + ∂2
t û(t, λ) = 0.
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Then, we project this equation by using the orthonormal system
{ek}k∈Nn . Since

Hek = µkek , µk
.

= 2|k |+ n, k ∈ Nn,

to determine the time-dependent function

û(t, λ)k,` =
(
û(t, λ)ek , e`

)
L2(Rn)

we have to solve the following Cauchy problem associated to the ODE
depending on the parameters λ, k , `

∂2
t û(t, λ)k,` + ∂t û(t, λ)k,` + µk |λ|û(t, λ)k,` = 0, t > 0,

û(0, λ)k,` =
(
û0(λ)ek , e`

)
L2(Rn)

,

∂t û(0, λ)k,` =
(
û1(λ)ek , e`

)
L2(Rn)

.
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Solving explicitly the previous Cauchy problem, we find

û(t, λ)k,` =
(
û0(λ)ek , e`

)
L2(Rn)

e−
t
2F (t, λ, k)

+
(
(û0(λ) + 1

2 û1(λ))ek , e`
)
L2(Rn)

e−
t
2G (t, λ, k),

where

F (t, λ, k)
.

=


cos
(√

µk |λ| − 1
4 t
)

if 4µk |λ| > 1,

1 if 4µk |λ| = 1,

cosh
(√

1
4 − µk |λ| t

)
if 4µk |λ| < 1,

G (t, λ, k)
.

=



sin
(√

µk |λ| − 1
4 t
)

√
µk |λ| − 1

4

if 4µk |λ| > 1,

t if 4µk |λ| = 1,

sinh
(√

1
4 − µk |λ| t

)
√

1
4 − µk |λ|

if 4µk |λ| < 1.
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In order to estimate ‖u(t, ·)‖2L2(Hn) we apply Plancherel formula

‖u(t, ·)‖2L2(Hn) = cn
∑

k,`∈Nn

∫
R∗

∣∣(û(t, λ)ek , e`
)
L2(Rn)

∣∣2|λ|n dλ

= cn
∑

k,`∈Nn

∫
0<|λ|< 1

8µk

∣∣(û(t, λ)ek , e`
)
L2(Rn)

∣∣2|λ|n dλ

+ cn
∑

k,`∈Nn

∫
|λ|> 1

8µk

∣∣(û(t, λ)ek , e`
)
L2(Rn)

∣∣2|λ|n dλ

.
= I low + I high.

Since

|û(t, λ)k,`|2 . e−δt
(
|û0(λ)k,`|2 + |û1(λ)k,`|2

)
for any |λ| > 1/(8µk) and for some δ > 0 (here δ and the unexpressed
multiplicative constant hereafter are independent of the time variable and
of the parameters λ and k , ` as well), by using Plancherel formula (this
time for the Cauchy data u0 and u1) we find

I high . e−δt
(
‖u0‖2L2(Hn) + ‖u1‖2L2(Hn)

)
.
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If we use again Plancherel formula to estimate I low too, then, we get the
L2 − L2 for u(t, ·) without any decay factor in t, that is,

‖u(t, ·)‖2L2(Hn) . ‖u0‖2L2(Hn) + ‖u1‖2L2(Hn)

since for |λ| < 1/(8µk) we may only estimate

|û(t, λ)k,`|2 . e−2µk |λ|t
(
|û0(λ)k,`|2 + |û1(λ)k,`|2

)
If we want to improve this estimate we have to use L1(Hn) regularity for
initial data.
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By Parseval’s identity and by

‖ûh(λ)ek‖L2(Rn) ≤ ‖ûh(λ)‖L(L2(Rn)→L2(Rn))‖ek‖L2(Rn) ≤ ‖uh‖L1(Hn)

for h = 0, 1, we get

I low .
∑
k∈Nn

∫
0<|λ|< 1

8µk

e−2µk |λ|t
(
‖û0(λ)ek‖2L2(Rn) + ‖û1(λ)ek‖2L2(Rn)

)
|λ|n dλ

.
∑
k∈Nn

∫ 1
8µk

0
e−2µkλtλn dλ

(
‖u0‖2L1(Hn) + ‖u1‖2L1(Hn)

)
.
∑
k∈Nn

(2µkt)−(n+1)

∫ t
4

0
e−θθn dθ

(
‖u0‖2L1(Hn) + ‖u1‖2L1(Hn)

)
. t−

Q
2

(
‖u0‖2L1(Hn) + ‖u1‖2L1(Hn)

)
,

in the last estimate we used that the series∑
k∈Nn

µ
−(n+1)
k =

∑
k∈Nn

(2|k |+ n)−(n+1)

is convergent.
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In order to estimate ‖ut(t, ·)‖2L2(Hn) and ‖∇Hu(t, ·)‖2L2(Hn) we can repeat similar
computations since we know the representations of

∂t û(t, λ)k,`

and of(
(Xju)

∧(t, λ)ek , e`
)
L2(Rn)

=

√
|λ|
2

(√
k · εj û(t, λ)k−εj ,` − û(t, λ)k+εj ,`

)
,(

(Yju)
∧(t, λ)ek , e`

)
L2(Rn)

= i sign(λ)

√
|λ|
2

(√
k · εj û(t, λ)k−εj ,` + û(t, λ)k+εj ,`

)
,

for any k, ` ∈ Nn, where {εj}16j6n is the canonical base of Rn.

Let us point out that the relations for the Hermite functions

∂wj ek(w) =
1√
2

(√
k · εj ek−εj (w)− ek+εj (w)

)
wj ek(w) =

1√
2

(√
k · εj ek−εj (w) + ek+εj (w)

)
(w ∈ Rn) play a fundamental role in the determination of the decay estimate
for the horizontal gradient of u.
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Thank you for your attention!
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