Energy estimates for hyperbolic operators with non Lipschitz-continuous coefficients

Daniele Del Santo (joint work with F. Colombini and F. Fanelli)

Pisa, February 11th, 2020

The problem

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

Strictly hyperbolic equations

Let's consider the operator

$$Lu = \partial_t^2 u - \sum_{j,k=1}^n \partial_{x_j} (a_{j,k}(t,x) \partial_{x_k} u)$$

on the strip $[0, T] \times \mathbb{R}^n$.

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

Strictly hyperbolic equations

Let's consider the operator

$$Lu = \partial_t^2 u - \sum_{j,k=1}^n \partial_{x_j}(a_{j,k}(t,x)\partial_{x_k}u)$$

on the strip $[0, T] \times \mathbb{R}^n$. Suppose that for all $(t, x) \in [0, T] \times \mathbb{R}^n$ and for all $j, k = 1 \dots n$,

$$a_{j,k}(t,x) = a_{k,j}(t,x) \in \mathbb{R}.$$

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

Strictly hyperbolic equations

Let's consider the operator

$$Lu = \partial_t^2 u - \sum_{j,k=1}^n \partial_{x_j}(a_{j,k}(t,x)\partial_{x_k}u)$$

on the strip $[0, T] \times \mathbb{R}^n$. Suppose that for all $(t, x) \in [0, T] \times \mathbb{R}^n$ and for all $j, k = 1 \dots n$, $2 \dots (t, x) = 2 \dots (t, x) \in \mathbb{R}$

$$a_{j,k}(t,x) = a_{k,j}(t,x) \in \mathbb{R}$$

Suppose that *L* is **strictly hyperbolic**

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

Strictly hyperbolic equations

Let's consider the operator

$$Lu = \partial_t^2 u - \sum_{j,k=1}^n \partial_{x_j}(a_{j,k}(t,x)\partial_{x_k}u)$$

on the strip $[0, T] \times \mathbb{R}^n$. Suppose that for all $(t, x) \in [0, T] \times \mathbb{R}^n$ and for all $j, k = 1 \dots n$,

$$\mathsf{a}_{j,k}(t,x) = \mathsf{a}_{k,j}(t,x) \in \mathbb{R}.$$

Suppose that *L* is **strictly hyperbolic** i.e. there exist $\Lambda_0 \ge \lambda_0 > 0$ such that, for all $(t, x, \xi) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^n$,

$$\lambda_0 |\xi|^2 \leq \sum_{j,k} a_{j,k}(t,x) \xi_j \xi_k \leq \Lambda_0 |\xi|^2.$$

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

The Cauchy problem for strictly hyperbolic equations

We are interested in the Cauchy problem

$$\begin{cases} Lu = 0 & \text{in } [0, T] \times \mathbb{R}^n, \\ u|_{t=0} = u_0, \quad \partial_t u|_{t=0} = u_1 & \text{in } \mathbb{R}^n. \end{cases}$$
(1)

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

The Cauchy problem for strictly hyperbolic equations

We are interested in the Cauchy problem

$$\begin{cases} Lu = 0 & \text{in } [0, T] \times \mathbb{R}^n, \\ u|_{t=0} = u_0, \quad \partial_t u|_{t=0} = u_1 & \text{in } \mathbb{R}^n. \end{cases}$$
(1)

Is this Cauchy problem well-posed in Sobolev spaces?

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

The Cauchy problem for strictly hyperbolic equations

We are interested in the Cauchy problem

$$\begin{cases} Lu = 0 & \text{in } [0, T] \times \mathbb{R}^n, \\ u|_{t=0} = u_0, \quad \partial_t u|_{t=0} = u_1 & \text{in } \mathbb{R}^n. \end{cases}$$
(1)

Is this Cauchy problem well-posed in Sobolev spaces?

(This means that for some $s \in \mathbb{R}$ and for all $u_0 \in H^{s+1}$, $u_1 \in H^s$, there exists a unique $u \in C^0([0, T], H^{s+1}) \cap C^1([0, T], H^s)$ (or possibly $C^0([0, T], H^{s^*+1}) \cap C^1([0, T], H^{s^*})$ with $s^* < s$) in such a way that (1) holds).

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

Energy inequality

A key point in solving the previous problem is obtaining a so called **energy estimate**.

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

Energy inequality

A key point in solving the previous problem is obtaining a so called **energy estimate**.

Problem

Is it possible to prove an inequality of the type

$$\sup_{0 \le t \le T^{*}} (\|u(t, \cdot)\|_{H^{s^{*}+1}} + \|\partial_{t}u(t, \cdot)\|_{H^{s^{*}}}) \le C(\|u(0, \cdot)\|_{H^{s+1}} + \|\partial_{t}u(0\cdot)\|_{H^{s}} + \int_{0}^{T^{*}} \|Lu(\tau, \cdot)\|_{H^{s^{*}}} d\tau),$$
(2)

for all $u \in C^2([0, T], H^{\infty})$ (where possibly $T^* \leq T$ and $s^* \leq s$)?

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

Energy inequality

A key point in solving the previous problem is obtaining a so called **energy estimate**.

Problem

Is it possible to prove an inequality of the type

$$\sup_{0 \le t \le T^*} (\|u(t, \cdot)\|_{H^{s^*+1}} + \|\partial_t u(t, \cdot)\|_{H^{s^*}}) \le C(\|u(0, \cdot)\|_{H^{s+1}} + \|\partial_t u(0 \cdot)\|_{H^s} + \int_0^{T^*} \|Lu(\tau, \cdot)\|_{H^{s^*}} d\tau),$$
(2)

for all $u \in C^2([0, T], H^\infty)$ (where possibly $T^* \leq T$ and $s^* \leq s$)?

If $s^* = s$, we say that in (2) there is

no loss of derivatives,

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

Energy inequality

A key point in solving the previous problem is obtaining a so called **energy estimate**.

Problem

Is it possible to prove an inequality of the type

$$\sup_{0 \le t \le T^{*}} (\|u(t, \cdot)\|_{H^{s^{*}+1}} + \|\partial_{t}u(t, \cdot)\|_{H^{s^{*}}}) \le C(\|u(0, \cdot)\|_{H^{s+1}} + \|\partial_{t}u(0\cdot)\|_{H^{s}} + \int_{0}^{T^{*}} \|Lu(\tau, \cdot)\|_{H^{s^{*}}} d\tau),$$
(2)

for all $u \in C^2([0, T], H^{\infty})$ (where possibly $T^* \leq T$ and $s^* \leq s$)?

If $s^* = s$, we say that in (2) there is

no loss of derivatives,

If $s^* < s$, we say that in (2) there is a

finite loss of derivatives.

Strictly hyperbolic equations The Cauchy problem for strictly hyperbolic operators Energy inequalities

regularity of coefficients vs energy inequality

The focus is on the relations between the

regularity of the coefficients (with respect to time and space) and the

existence of an energy inequality in Sobolev spaces.

Coefficients depending only on t: Lipschitz and log-Lipschitz case

Let's suppose that the coefficients depend only on time.

Coefficients depending only on t: Lipschitz and log-Lipschitz case

Let's suppose that the coefficients depend only on time.

• If the coefficients $a_{j,k}$ are Lipschitz-continuous, i.e.

$$\sup_t |a_{j,k}(t+\tau) - a_{j,k}(t)| \le C|\tau|,$$

then (2) is valid for $s^* = s$ (no loss, *classical result*).

Coefficients depending only on t: Lipschitz and log-Lipschitz case

Let's suppose that the coefficients depend only on time.

• If the coefficients $a_{j,k}$ are Lipschitz-continuous, i.e.

$$\sup_t |a_{j,k}(t+\tau) - a_{j,k}(t)| \le C|\tau|,$$

then (2) is valid for $s^* = s$ (no loss, *classical result*).

• If the coefficients $a_{i,k}$ are log-Lipschitz-continuous, i.e.

$$\sup_t |a_{j,k}(t+\tau) - a_{j,k}(t)| \leq C|\tau|\log(\frac{1}{|\tau|}+1),$$

then (2) for $s^* < s$ (finite loss, Colombini, De Giorgi and Spagnolo '79).

Coefficients depending only on t: Zygmund and log-Zygmund case

• If the coefficients $a_{j,k}$ are Zygmund-continuous, i.e.

$$\sup_t |a_{j,k}(t+\tau) + a_{j,k}(t-\tau) - 2a_{j,k}(t)| \leq C|\tau|,$$

then (2) is valid for $s^* = s$ (**no loss**, *Tarama '07*).

Coefficients depending only on t: Zygmund and log-Zygmund case

• If the coefficients $a_{j,k}$ are Zygmund-continuous, i.e.

$$\sup_t |a_{j,k}(t+\tau) + a_{j,k}(t-\tau) - 2a_{j,k}(t)| \leq C|\tau|,$$

then (2) is valid for $s^* = s$ (no loss, Tarama '07).

• If the coefficients $a_{j,k}$ are log-Zygmund-continuous, i.e.

$$\sup_t |a_{j,k}(t+\tau) + a_{j,k}(t-\tau) - 2a_{j,k}(t)| \leq C|\tau|\log(\frac{1}{|\tau|}+1),$$

then (2) is valid for $s^* < s$ (finite loss, Tarama '07). Remark

Coefficients depending on t and x: Lipschitz and log-Lipschitz case

Let's now suppose that the coefficients depend on time and space.

Coefficients depending on t and x: Lipschitz and log-Lipschitz case

Let's now suppose that the coefficients depend on time and space.

• If the coefficients $a_{i,k}$ are Lipschitz-continuous, i.e.

$$\sup_{t,x} |a_{j,k}(t+\tau,x+y)-a_{j,k}(t,x)| \leq C(|\tau|+|y|),$$

then (2) is valid for $s^* = s = 0$ (no loss, Hurd and Sattinger '67).

Coefficients depending on t and x: Lipschitz and log-Lipschitz case

Let's now suppose that the coefficients depend on time and space.

• If the coefficients $a_{j,k}$ are Lipschitz-continuous, i.e.

$$\sup_{t,x} |a_{j,k}(t+\tau,x+y) - a_{j,k}(t,x)| \leq C(|\tau|+|y|),$$

then (2) is valid for $s^* = s = 0$ (no loss, Hurd and Sattinger '67).

• If the coefficients $a_{i,k}$ are log-Lipschitz-continuous, i.e.

$$\sup_{t,x} |a_{j,k}(t+\tau, x+y) - a_{j,k}(t,x)| \le C(|\tau|+|y|) \log(\frac{1}{|\tau|+|y|}+1),$$

then (2) for $s^* < s \in]-1,0[$ (finite loss, Colombini and Lerner '95).

Coefficients depending on t and x: Zygmund case and log-Zygmund case

• If the coefficients $a_{j,k}$ are Zygmund-continuous, i.e.

 $\sup_{t,x} |a_{j,k}(t+\tau,x+y)+a_{j,k}(t+\tau,x-y)-2a_{j,k}(t,x)| \leq C(|\tau|+|y|),$

Coefficients depending on t and x: Zygmund case and log-Zygmund case

• If the coefficients $a_{j,k}$ are Zygmund-continuous, i.e.

$$\sup_{t,x} |a_{j,k}(t+\tau,x+y)+a_{j,k}(t+\tau,x-y)-2a_{j,k}(t,x)| \leq C(|\tau|+|y|),$$

then (2) is valid for $s^* = s = -1/2$ (no loss, but only for

 $u_0 \in H^{1/2}, \ u_1 \in H^{-1/2},$

Colombini, DS, Fanelli and Métivier, JMPA '13).

Coefficients depending on t and x: Zygmund case and log-Zygmund case

• If the coefficients $a_{j,k}$ are Zygmund-continuous, i.e.

 $\sup_{t,x} |a_{j,k}(t+\tau,x+y)+a_{j,k}(t+\tau,x-y)-2a_{j,k}(t,x)| \leq C(|\tau|+|y|),$

then (2) is valid for $s^* = s = -1/2$ (no loss, but only for

 $u_0\in H^{1/2},\ u_1\in H^{-1/2},$

Colombini, DS, Fanelli and Métivier, JMPA '13).

• If the coefficients $a_{j,k}$ are log-Zygmund-continuous in t and log-Lipschitz-continuous in x, i.e.

 $\sup_{t,x} |a_{jk}(t+ au,x)+a_{jk}(t- au,x)-2a_{jk}(t,x)| \leq C_0| au|\log(rac{1}{| au|}+1), \ \sup_{t,x} |a_{jk}(t,x+y)-a_{jk}(t,x)| \leq C_1|y|\log(rac{1}{|y|}+1).$

then (2) for $s^* < s \in]-1,0[$ (finite loss, Colombini, DS, Fanelli and Métivier, Comm. PDE '13).

The problem Statement of the result Outline of the proof

The problem

It is not clear what happens if the coefficients are depending on t and x, they are Zygmund-continuous and s is different from -1/2.

The problem Statement of the result Outline of the proof

The problem

It is not clear what happens if the coefficients are depending on t and x, they are Zygmund-continuous and s is different from -1/2.

Conjecture

No loss in the case s = 0, i.e (2) is valid with $s^* = s = 0$ and

 $u_0 \in H^1, \quad u_1 \in L^2.$

The problem Statement of the result Outline of the proof

The problem

It is not clear what happens if the coefficients are depending on t and x, they are Zygmund-continuous and s is different from -1/2.

Conjecture

No loss in the case s = 0, i.e (2) is valid with $s^* = s = 0$ and

 $u_0 \in H^1$, $u_1 \in L^2$.

Here we present a partial answer, for coefficients which are

Zygmund-continuous in *t* and **Lipschitz-continuous in** *x*.

The problem Statement of the result Outline of the proof

Statement of the result

Theorem (Colombini, DS and Fanelli)

Suppose that there exist constants C_0 , $C_1 > 0$ such that, for all j, k = 1, ..., n and for all $\tau \in \mathbb{R}$, $y \in \mathbb{R}^n$,

$$\sup_{t,x}|a_{jk}(t+\tau,x)+a_{jk}(t-\tau,x)-2a_{jk}(t,x)|\leq C_0|\tau|,$$

$$\sup_{t,x}|a_{jk}(t,x+y)-a_{jk}(t,x)|\leq C_1|y|.$$

Then, for all fixed $s \in [-1,0]$, there exists a constant C > 0, depending only on s and T, such that

$$\sup_{0 \le t \le T} (\|u(t, \cdot)\|_{H^{s+1}} + \|\partial_t u(t, \cdot)\|_{H^s}) \\ \le C(\|u(0, \cdot)\|_{H^{s+1}} + \|\partial_t u(0, \cdot)\|_{H^s} + \int_0^T \|Lu(\tau, \cdot)\|_{H^s} \, d\tau),$$

for all $u \in C^2([0, T], H^\infty)$.

The problem Statement of the result Outline of the proof

Colombini-De Giorgi-Spagnolo's proof/1

• case
$$n = 1$$
, i.e.

$$\partial_t^2 u - a(t) \partial_x^2 u = 0.$$

The problem Statement of the result Outline of the proof

Colombini-De Giorgi-Spagnolo's proof/1

• case n = 1, i.e.

$$\partial_t^2 u - a(t) \partial_x^2 u = 0.$$

• Consider the Fourier transform of *u* w.r.t. *x*:

$$v(t,\xi) = \widehat{u}^{x}(t,\xi)$$
 then v solves $v'' + a(t)|\xi|^2 v = 0$

The problem Statement of the result Outline of the proof

Colombini-De Giorgi-Spagnolo's proof/1

• case *n* = 1, i.e.

$$\partial_t^2 u - a(t) \partial_x^2 u = 0.$$

• Consider the Fourier transform of *u* w.r.t. *x*:

 $v(t,\xi) = \widehat{u}^{*}(t,\xi)$ then v solves $v'' + a(t)|\xi|^2 v = 0$

• Introduce $a_{\varepsilon} = \varrho_{\varepsilon} * a$, then, since a is Log-Lipschitz, we have

 $\sup_t |a(t) - a_{\varepsilon}(t)| \leq C \varepsilon \log(\frac{1}{\varepsilon} + 1),$

 $\sup_t |a_{\varepsilon}'(t)| \leq C \log(\frac{1}{\varepsilon} + 1).$

The problem Statement of the result Outline of the proof

Colombini-De Giorgi-Spagnolo's proof/1

• case *n* = 1, i.e.

$$\partial_t^2 u - a(t) \partial_x^2 u = 0.$$

• Consider the Fourier transform of *u* w.r.t. *x*:

$$v(t,\xi) = \widehat{u}^{x}(t,\xi)$$
 then v solves $v^{\prime\prime} + a(t)|\xi|^{2}v = 0$

• Introduce $a_{\varepsilon} = \varrho_{\varepsilon} * a$, then, since a is Log-Lipschitz, we have

$$\sup_t |a(t) - a_{\varepsilon}(t)| \leq C \varepsilon \log(\frac{1}{\varepsilon} + 1),$$

$$\sup_t |a_{\varepsilon}'(t)| \leq C \log(\frac{1}{\varepsilon} + 1).$$

• Consider the approximate energy

$$\mathcal{E}_arepsilon(t,\xi) = |\mathbf{v}'(t)|^2 + \mathbf{a}_arepsilon(t)|\xi|^2|\mathbf{v}(t)|^2 + |\mathbf{v}(t)|^2,$$

The problem Statement of the result Outline of the proof

Colombini-De Giorgi-Spagnolo's proof/1

• case *n* = 1, i.e.

$$\partial_t^2 u - a(t) \partial_x^2 u = 0.$$

• Consider the Fourier transform of *u* w.r.t. *x*:

$$v(t,\xi) = \widehat{u}^{x}(t,\xi)$$
 then v solves $v'' + a(t)|\xi|^2 v = 0$

• Introduce $a_{\varepsilon} = \varrho_{\varepsilon} * a$, then, since a is Log-Lipschitz, we have

$$\sup_t |a(t) - a_{\varepsilon}(t)| \leq C \varepsilon \log(\frac{1}{\varepsilon} + 1),$$

$$\sup_t |a_{\varepsilon}'(t)| \leq C \log(\frac{1}{\varepsilon} + 1).$$

• Consider the approximate energy

$$E_arepsilon(t,\xi)=|v'(t)|^2+a_arepsilon(t)|\xi|^2|v(t)|^2+|v(t)|^2,$$

• We have, uniformly in ε ,

$$\int (1+|\xi|^2)^s E_{\varepsilon}(t,\xi) d\xi \sim \|u(t,\cdot)\|_{H^{s+1}}^2 + \|\partial_t u(t,\cdot)\|_{H^s}^2.$$

The problem Statement of the result Outline of the proof

Colombini-De Giorgi-Spagnolo's proof/2

• Differentiating the approximate energy and using the equation

$$\partial_t \mathcal{E}_arepsilon(t,\xi) = 2(\mathsf{a}_arepsilon(t) - \mathsf{a}(t))|\xi|^2 \mathsf{v} \mathsf{v}' + \mathsf{a}_arepsilon(t)|\xi|^2 |\mathsf{v}|^2 + 2\mathsf{v} \mathsf{v}'$$

The problem Statement of the result Outline of the proof

Colombini-De Giorgi-Spagnolo's proof/2

• Differentiating the approximate energy and using the equation

$$\partial_t \mathcal{E}_{arepsilon}(t,\xi) = 2(\mathsf{a}_{arepsilon}(t) - \mathsf{a}(t))|\xi|^2 \mathsf{v} \mathsf{v}' + \mathsf{a}_{arepsilon}'(t)|\xi|^2 |\mathsf{v}|^2 + 2\mathsf{v} \mathsf{v}'$$

so that, using Grönwall lemma,

$$egin{aligned} & \mathcal{E}_arepsilon(t,\xi) & \leq \mathcal{E}_arepsilon(0,\xi) \exp\left[C\left(\int_0^T |a'_arepsilon|\,dt + |\xi|\int_0^T |a-a_arepsilon|\,dt + \int_0^T 1\,dt
ight)
ight] \ & \leq E_arepsilon(0,\xi) \exp\left[C((\lograc{1}{arepsilon}+1) + |arepsilon|arepsilon(\lograc{1}{arepsilon}+1) + 1)
ight] \end{aligned}$$

The problem Statement of the result Outline of the proof

Colombini-De Giorgi-Spagnolo's proof/2

• Differentiating the approximate energy and using the equation

$$\partial_t \mathcal{E}_arepsilon(t,\xi) = 2(a_arepsilon(t)-a(t))|\xi|^2 vv' + a_arepsilon(t)|\xi|^2|v|^2 + 2vv'$$

so that, using Grönwall lemma,

$$\begin{split} E_{\varepsilon}(t,\xi) &\leq E_{\varepsilon}(0,\xi) \exp\left[C\left(\int_{0}^{T}|a_{\varepsilon}'|\,dt+|\xi|\int_{0}^{T}|a-a_{\varepsilon}|\,dt+\int_{0}^{T}1\,dt\right)\right] \\ &\leq E_{\varepsilon}(0,\xi) \exp\left[C((\log\frac{1}{\varepsilon}+1)+|\xi|\varepsilon(\log\frac{1}{\varepsilon}+1)+1)\right] \end{split}$$

Key point: choose ε = |ξ|⁻¹: the approximation rate of the coefficients depend on the variable ξ, i.e. on the point of the phase space. We obtain

$$\begin{split} E_{|\xi|^{-1}}(t,\xi) &\leq E_{|\xi|^{-1}}(0,\xi)\exp(C(\log(|\xi|+1)+1)) \\ &\leq C'E_{|\xi|^{-1}}(0,\xi)(1+|\xi|)^C. \end{split}$$

The problem Statement of the result Outline of the proof

Tarama's proof/1

• case
$$n = 1$$
, i.e.

$$\partial_t^2 u - a(t) \partial_x^2 u = 0.$$

▲ back

The problem Statement of the result Outline of the proof

Tarama's proof/1

• case n = 1, i.e.

$$\partial_t^2 u - a(t) \partial_x^2 u = 0.$$

• Consider the Fourier transform of *u* w.r.t. *x*:

$$v(t,\xi) = \widehat{u}^{\times}(t,\xi)$$
 then v solves $v'' + a(t)|\xi|^2 v = 0$

The problem Statement of the result Outline of the proof

Tarama's proof/1

• case n = 1, i.e.

$$\partial_t^2 u - a(t) \partial_x^2 u = 0.$$

• Consider the Fourier transform of *u* w.r.t. *x*:

 $v(t,\xi) = \widehat{u}^{\times}(t,\xi)$ then v solves $v'' + a(t)|\xi|^2 v = 0$

• Introduce $a_{\varepsilon} = \varrho_{\varepsilon} * a$, then, since a is Zygmund, we have

$$\begin{split} \sup_{t} |a - a_{\varepsilon}| &\leq C\varepsilon, \\ \sup_{t} |a_{\varepsilon}'| &\leq C \log(\frac{1}{\varepsilon} + 1), \\ \sup_{t} |a_{\varepsilon}''| &\leq C \frac{1}{\varepsilon}. \end{split}$$

The problem Statement of the result Outline of the proof

Tarama's proof/1

• case n = 1, i.e.

$$\partial_t^2 u - a(t) \partial_x^2 u = 0.$$

• Consider the Fourier transform of *u* w.r.t. *x*:

$$v(t,\xi)=\widehat{u}^{ imes}(t,\xi)$$
 then v solves $v^{\prime\prime}+a(t)|\xi|^2v=0$

• Introduce $a_{\varepsilon} = \varrho_{\varepsilon} * a$, then, since a is Zygmund, we have

$$\begin{split} \sup_{t} |a - a_{\varepsilon}| &\leq C\varepsilon, \\ \sup_{t} |a_{\varepsilon}'| &\leq C\log(\frac{1}{\varepsilon} + 1), \\ \sup_{t} |a_{\varepsilon}''| &\leq C\frac{1}{\varepsilon}. \end{split}$$

• Consider the Tarama's approximate energy

$$ilde{E}_arepsilon(t,\xi) = rac{1}{\sqrt{a_arepsilon}} |m{v}'(t) + rac{a'_arepsilon}{4a_arepsilon} m{v}(t)|^2 + \sqrt{a_arepsilon} |\xi|^2 |m{v}(t)|^2,$$

◀ back

The problem Statement of the result Outline of the proof

Tarama's proof/2

• Differentiating the approximate energy and using the equation $\partial_t \tilde{E}_\varepsilon(t,\xi)$ is

$$\frac{2}{\sqrt{a}_{\varepsilon}}\Big(v'(t)+\frac{a'_{\varepsilon}}{4a_{\varepsilon}}v(t)\Big)\Big((\frac{a'_{\varepsilon}}{4a_{\varepsilon}})'-(\frac{a'_{\varepsilon}}{4a_{\varepsilon}})^2+(a_{\varepsilon}(t)-a(t))|\xi|^2\Big)v$$

so that, using Grönwall lemma,

$$egin{aligned} & ilde{E}_arepsilon(0,\xi)\expiggl[C((rac{1}{|\xi|}\int_0^T|a_arepsilon''|+|a_arepsilon|^2\,dt)+(|\xi|\int_0^T|a-a_arepsilon|\,dt))iggr]\ &\leq ilde{E}_arepsilon(0,\xi)\expiggl[C(rac{1}{|\xi|arepsilon}+|\xi|arepsilon)iggr]\,. \end{aligned}$$

The problem Statement of the result Outline of the proof

Tarama's proof/2

• Differentiating the approximate energy and using the equation $\partial_t \tilde{E}_{\varepsilon}(t,\xi)$ is

$$\frac{2}{\sqrt{a}_{\varepsilon}}\Big(v'(t)+\frac{a'_{\varepsilon}}{4a_{\varepsilon}}v(t)\Big)\Big((\frac{a'_{\varepsilon}}{4a_{\varepsilon}})'-(\frac{a'_{\varepsilon}}{4a_{\varepsilon}})^2+(a_{\varepsilon}(t)-a(t))|\xi|^2\Big)v$$

so that, using Grönwall lemma,

$$\begin{split} \tilde{E}_{\varepsilon}(t,\xi) &\leq \tilde{E}_{\varepsilon}(0,\xi) \exp\Big[C((\frac{1}{|\xi|}\int_{0}^{T}|a_{\varepsilon}''|+|a_{\varepsilon}'|^{2} dt)+(|\xi|\int_{0}^{T}|a-a_{\varepsilon}| dt))\Big] \\ &\leq \tilde{E}_{\varepsilon}(0,\xi) \exp\Big[C(\frac{1}{|\xi|\varepsilon}+|\xi|\varepsilon)\Big]\,. \end{split}$$

 \bullet Choosing also in this case $\varepsilon = |\xi|^{-1}$ we have

$$ilde{E}_{arepsilon}(t,\xi) \leq C ilde{E}_{arepsilon}(0,\xi)$$

and the energy estimate follows without loss of derivatives.

The problem Statement of the result Outline of the proof

Tools: Littlewood-Paley decomposition/1

Let $\psi\in {\it C}^\infty([0,+\infty[,\mathbb{R}) \text{ such that }\psi \text{ is non-increasing and }$

$$\psi(t)=1 \quad ext{for} \quad 0\leq t\leq rac{11}{10}, \qquad \psi(t)=0 \quad ext{for} \quad t\geq rac{19}{10}.$$

We set, for $\xi \in \mathbb{R}^d$,

 $\chi(\xi) = \psi(|\xi|), \qquad \varphi(\xi) = \chi(\xi) - \chi(2\xi).$

The problem Statement of the result Outline of the proof

Tools: Littlewood-Paley decomposition/1

Let $\psi\in {\it C}^\infty([0,+\infty[,\mathbb{R}) \text{ such that }\psi \text{ is non-increasing and }$

$$\psi(t) = 1$$
 for $0 \le t \le \frac{11}{10}$, $\psi(t) = 0$ for $t \ge \frac{19}{10}$.

We set, for $\xi \in \mathbb{R}^d$,

$$\chi(\xi) = \psi(|\xi|), \qquad \varphi(\xi) = \chi(\xi) - \chi(2\xi).$$

Given a tempered distribution u, the dyadic blocks are defined by

$$\begin{split} &\Delta_0 u = \chi(D) u = \mathcal{F}^{-1}(\chi(\xi) \hat{u}(\xi)), \\ &\Delta_j u = \varphi(2^{-j}D) u = \mathcal{F}^{-1}(\varphi(2^{-j}\xi) \hat{u}(\xi)) \quad \text{if} \quad j \geq 1, \end{split}$$

where we have denoted by \mathcal{F}^{-1} the inverse of the Fourier transform. We introduce also the operator

$$S_k u = \sum_{j=0}^k \Delta_j u = \mathcal{F}^{-1}(\chi(2^{-k}\xi)\hat{u}(\xi)).$$

The problem Statement of the result Outline of the proof

Tools: Littlewood-Paley decomposition/2

It is well known the characterization of classical Sobolev spaces via Littlewood-Paley decomposition: for any $s \in \mathbb{R}$, $u \in S'$,

 $u \in H^s$

if and only if

$$orall j, \ \Delta_j u \in L^2 \quad ext{and} \quad \sum 2^{2js} \|\Delta_j u\|_{L^2}^2 < +\infty$$

The problem Statement of the result Outline of the proof

Tools: Littlewood-Paley decomposition/2

It is well known the characterization of classical Sobolev spaces via Littlewood-Paley decomposition: for any $s \in \mathbb{R}$, $u \in S'$,

 $u \in H^s$

if and only if

$$orall j, \ \Delta_j u \in L^2 \quad ext{and} \quad \sum 2^{2js} \|\Delta_j u\|_{L^2}^2 < +\infty$$

Moreover, in such a case, there exists a constant $C_s > 1$ such that

$$\frac{1}{C_s}\sum_{j=0}^{+\infty} 2^{2js} \|\Delta_j u\|_{L^2}^2 \le \|u\|_{H^s}^2 \le C_s \sum_{j=0}^{+\infty} 2^{2js} \|\Delta_j u\|_{L^2}^2.$$

The problem Statement of the resul Outline of the proof

Tools: Littlewood-Paley decomposition/3

Via Littlewood-Paley decomposition, we can characterize the spaces of Lipschitz, Zygmund and log-Lipschitz functions.

The problem Statement of the result Outline of the proof

Tools: Littlewood-Paley decomposition/3

Via Littlewood-Paley decomposition, we can characterize the spaces of Lipschitz, Zygmund and log-Lipschitz functions.

Proposition

Let $u \in L^{\infty}(\mathbb{R}^d)$. We have the following:

$u \in Lip(\mathbb{R}^d)$	if and only if	$\sup_{j} \ \nabla S_{j}u\ _{L^{\infty}} < +\infty,$
$u \in Zyg(\mathbb{R}^d)$	if and only if	$\sup_j 2^j \ \Delta_j u\ _{L^\infty} < +\infty,$
$u \in \mathit{LogLip}(\mathbb{R}^d)$	if and only if	$\sup_{j}\frac{\ \nabla S_{j}u\ _{L^{\infty}}}{j}<+\infty,$
$u \in LogZyg(\mathbb{R}^d)$	if and only if	$\sup_{j}\frac{2^{j}\ \Delta_{j}u\ _{L^{\infty}}}{j}<+\infty.$

The problem Statement of the result Outline of the proof

Tools: paradifferential calculus with parameters/1

Let $\gamma \geq 1$ and consider $\psi_\gamma \in {\it C}^\infty(\mathbb{R}^d \times \mathbb{R}^d)$ with the following properties

• there exist $\varepsilon_1 < \varepsilon_2 < 1$ such that

$$\psi_{\gamma}(\eta,\xi) = \begin{cases} 1 & \text{for } |\eta| \leq \varepsilon_1(\gamma + |\xi|), \\ 0 & \text{for } |\eta| \geq \varepsilon_2(\gamma + |\xi|); \end{cases}$$

The problem Statement of the result Outline of the proof

Tools: paradifferential calculus with parameters/1

Let $\gamma \geq 1$ and consider $\psi_\gamma \in C^\infty(\mathbb{R}^d imes \mathbb{R}^d)$ with the following properties

• there exist $\varepsilon_1 < \varepsilon_2 < 1$ such that

$$\psi_{\gamma}(\eta,\xi) = \begin{cases} 1 & \text{for } |\eta| \leq \varepsilon_1(\gamma + |\xi|), \\ 0 & \text{for } |\eta| \geq \varepsilon_2(\gamma + |\xi|); \end{cases}$$

• for all $(\beta, \alpha) \in \mathbb{N}^d imes \mathbb{N}^d$, there exists $\mathcal{C}_{\beta, \alpha} \geq 0$ such that

$$|\partial^{eta}_{\eta}\partial^{lpha}_{\xi}\psi_{\gamma}(\eta,\xi)|\leq \mathcal{C}_{eta,lpha}(\gamma+|\xi|)^{-|lpha|-|eta|}.$$

The problem Statement of the result Outline of the proof

Tools: paradifferential calculus with parameters/1

Let $\gamma \geq 1$ and consider $\psi_\gamma \in C^\infty(\mathbb{R}^d imes \mathbb{R}^d)$ with the following properties

• there exist $\varepsilon_1 < \varepsilon_2 < 1$ such that

$$\psi_{\gamma}(\eta,\xi) = \begin{cases} 1 & \text{for } |\eta| \leq \varepsilon_1(\gamma + |\xi|), \\ 0 & \text{for } |\eta| \geq \varepsilon_2(\gamma + |\xi|); \end{cases}$$

• for all $(\beta, \alpha) \in \mathbb{N}^d \times \mathbb{N}^d$, there exists $\mathcal{C}_{\beta, \alpha} \geq 0$ such that

$$|\partial_\eta^eta\partial_\xi^lpha\psi_\gamma(\eta,\xi)|\leq \mathcal{C}_{eta,lpha}(\gamma+|\xi|)^{-|lpha|-|eta|}.$$

Define now

$$G^{\psi_{\gamma}}(x,\xi) = (\mathcal{F}_{\eta}^{-1}\psi_{\gamma})(x,\xi),$$

where $\mathcal{F}_{\eta}^{-1}\psi_{\gamma}$ is the inverse of the Fourier transform of ψ_{γ} with respect to the η variable.

The problem Statement of the result Outline of the proof

Tools: paradifferential calculus with parameters/2

Let $a \in L^{\infty}$. We associate to a the classical pseudodifferential symbol

$$\sigma_{\mathbf{a},\gamma}(\mathbf{x},\xi) = (\psi_{\gamma}(D_{\mathbf{x}},\xi)\mathbf{a})(\mathbf{x},\xi) = (G^{\psi_{\gamma}}(\cdot,\xi)\ast\mathbf{a})(\mathbf{x}),$$

and we define the **paradifferential operator associate to** *a* as the classical pseudodifferential operator associated to $\sigma_{a,\gamma}$, i.e.

$$T_a^{\gamma}u(x) = \sigma_a(D_x)u(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d_{\xi}} \sigma_a(x,\xi)\hat{u}(\xi) d\xi.$$

The problem Statement of the result Outline of the proof

Tools: paradifferential calculus with parameters/2

Let $a \in L^{\infty}$. We associate to a the classical pseudodifferential symbol

$$\sigma_{\mathbf{a},\gamma}(\mathbf{x},\xi) = (\psi_{\gamma}(D_{\mathbf{x}},\xi)\mathbf{a})(\mathbf{x},\xi) = (G^{\psi_{\gamma}}(\cdot,\xi)\ast\mathbf{a})(\mathbf{x}),$$

and we define the **paradifferential operator associate to** *a* as the classical pseudodifferential operator associated to $\sigma_{a,\gamma}$, i.e.

$$T_a^{\gamma}u(x) = \sigma_a(D_x)u(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d_{\xi}} \sigma_a(x,\xi)\hat{u}(\xi) \,d\xi.$$

It is possible to choose ψ_{γ} in such a way that T_a^1 is the usual Bony's paraproduct operator

$$T^1_a u = \sum_{k=0}^{+\infty} S_k a \Delta_{k+3} u,$$

while, in the general case,

$$T^{\gamma}_{a}u = S_{\mu-1}aS_{\mu+2}u + \sum_{k=\mu}^{+\infty}S_{k}a\Delta_{k+3}u, \quad \text{with} \quad \mu = [\log_{2}\gamma].$$

The problem Statement of the resul Outline of the proof

Tools: low regularity symbols and calculus/1

We deal with paradifferential operators having symbols with limited regularity in time and space.

The problem Statement of the result Outline of the proof

Tools: low regularity symbols and calculus/1

We deal with paradifferential operators having symbols with limited regularity in time and space.

Definition

A symbol of order *m* is a function $a(t, x, \xi, \gamma)$ which is locally bounded on $[0, T] \times \mathbb{R}^n \times \mathbb{R}^n \times [1, +\infty[$, of class C^{∞} with respect to ξ such that, for all $\alpha \in \mathbb{N}^n$, there exists $C_{\alpha} > 0$ such that, for all (t, x, ξ, γ) ,

$$|\partial_{\xi}^{lpha} a(t,x,\xi,\gamma)| \leq C_{lpha} (\gamma + |\xi|)^{m-|lpha|}.$$

We take now a symbol *a* of order $m \ge 0$, Zygmund-continuous with respect to *t*, uniformly with respect to *x* and Lipschitz-continuous with respect to *x*, uniformly with respect to *t*. We smooth out *a* with respect to time via a convolution with a mollifier, and call a_{ε} the smoothed symbol. We consider the classical symbol $\sigma_{a_{\varepsilon}}$ obtained from a_{ε} via convolution with $G^{\psi_{\gamma}}$.

Tools: low regularity symbols and calculus/2

Proposition

Under the previous hypotheses, one has:

$$\begin{aligned} |\partial_{\xi}^{\alpha}\sigma_{a_{\varepsilon}}(t,x,\xi,\gamma)| &\leq C_{\alpha}(\gamma+|\xi|)^{m-|\alpha|}, \\ |\partial_{x}^{\beta}\partial_{\xi}^{\alpha}\sigma_{a_{\varepsilon}}(t,x,\xi,\gamma)| &\leq C_{\beta,\alpha}(\gamma+|\xi|)^{m-|\alpha|+|\beta|-1}, \\ |\partial_{\xi}^{\alpha}\sigma_{\partial_{t}a_{\varepsilon}}(t,x,\xi,\gamma)| &\leq C_{\alpha}(\gamma+|\xi|)^{m-|\alpha|}\log(\frac{1}{\varepsilon}+1), \\ |\partial_{x}^{\beta}\partial_{\xi}^{\alpha}\sigma_{\partial_{t}a_{\varepsilon}}(t,x,\xi,\gamma)| &\leq C_{\beta,\alpha}(\gamma+|\xi|)^{m-|\alpha|+|\beta|-1}\frac{1}{\varepsilon}, \\ |\partial_{\xi}^{\alpha}\sigma_{\partial_{t}^{2}a_{\varepsilon}}(t,x,\xi,\gamma)| &\leq C_{\alpha}(\gamma+|\xi|)^{m-|\alpha|}\frac{1}{\varepsilon}, \\ |\partial_{x}^{\beta}\partial_{\xi}^{\alpha}\sigma_{\partial_{t}^{2}a_{\varepsilon}}(t,x,\xi,\gamma)| &\leq C_{\beta,\alpha}(\gamma+|\xi|)^{m-|\alpha|+|\beta|-1}\frac{1}{\varepsilon^{2}}, \end{aligned}$$

where $|\beta| \ge 1$ and all the constants C_{α} and $C_{\beta,\alpha}$ don't depend on γ .

D. Del Santo

Energy estimates for hyperbolic operators

The problem Statement of the result Outline of the proof

Tools: low regularity symbols and calculus/3

In particular

$$|\partial^lpha_\xi\sigma_{\partial_t a_arepsilon}(t,x,\xi,\gamma)|\leq C_lpha(\gamma+|\xi|)^{m-|lpha|}\log(rac{1}{arepsilon}+1)$$

is the analogue (remember Tarama's proof) of

$$\sup_t |a_\varepsilon'| \leq C \log(\frac{1}{\varepsilon} + 1)$$

and

$$|\partial_{\xi}^{\alpha}\sigma_{\partial_{t}^{2}a_{\varepsilon}}(t,x,\xi,\gamma)| \leq C_{\alpha}(\gamma+|\xi|)^{m-|\alpha|}\frac{1}{\varepsilon}$$

is the analogue of

$$\sup_t |a_{\varepsilon}''| \leq C\frac{1}{\varepsilon}.$$

The problem Statement of the result Outline of the proof

Proof: approximate energy/1

Let $u \in C^2([0, T], H^\infty)$.

The problem Statement of the result Outline of the proof

Proof: approximate energy/1

Let
$$u \in C^2([0, T], H^\infty)$$
. We have

$$\partial_t^2 u = \sum_{j,k} \partial_j (a_{jk}(t,x)\partial_k u) + Lu = \sum_{j,k} \partial_j (T_{a_{jk}}\partial_k u) + \tilde{L}u,$$

where

$$\tilde{L}u = Lu + \sum_{j,k} \partial_j ((a_{jk} - T_{a_{jk}})\partial_k u).$$

The problem Statement of the result Outline of the proof

Proof: approximate energy/1

Let
$$u \in C^2([0, T], H^\infty)$$
. We have

$$\partial_t^2 u = \sum_{j,k} \partial_j (a_{jk}(t,x)\partial_k u) + Lu = \sum_{j,k} \partial_j (T_{a_{jk}}\partial_k u) + \tilde{L}u,$$

where

$$\tilde{L}u = Lu + \sum_{j,k} \partial_j ((a_{jk} - T_{a_{jk}}) \partial_k u).$$

We apply the operator Δ_{ν} and we obtain

$$\partial_t^2 u_{\nu} = \sum_{j,k} \partial_j (T_{a_{jk}} \partial_k u_{\nu}) + \sum_{j,k} \partial_j ([\Delta_{\nu}, T_{a_{jk}}] \partial_k u) + (\tilde{L}u)_{\nu},$$

where $u_{\nu} = \Delta_{\nu} u$, $(\tilde{L}u)_{\nu} = \Delta_{\nu} (\tilde{L}u)$ and $[\Delta_{\nu}, T_{a_{jk}}]$ is the commutator between the localization operator Δ_{ν} and the paramultiplication operator $T_{a_{jk}}$.

The problem Statement of the result Outline of the proof

Proof: approximate energy/2

We consider the 0-th order symbol

$$\alpha_{\varepsilon}(t,x,\xi,\gamma) = (\gamma^2 + |\xi|^2)^{-\frac{1}{2}} (\gamma^2 + \sum_{j,k} a_{jk,\varepsilon}(t,x)\xi_j\xi_k)^{\frac{1}{2}}.$$

The problem Statement of the result Outline of the proof

Proof: approximate energy/2

We consider the 0-th order symbol

$$\alpha_{\varepsilon}(t,x,\xi,\gamma) = (\gamma^2 + |\xi|^2)^{-\frac{1}{2}} (\gamma^2 + \sum_{j,k} a_{jk,\varepsilon}(t,x)\xi_j\xi_k)^{\frac{1}{2}}.$$

We fix

$$\varepsilon = 2^{-\nu}$$

and we write α_{ν} and $a_{jk,\nu}$ instead of $\alpha_{2^{-\nu}}$ and $a_{jk,2^{-\nu}}$ respectively.

The problem Statement of the result Outline of the proof

Proof: approximate energy/2

We consider the 0-th order symbol

$$\alpha_{\varepsilon}(t,x,\xi,\gamma) = (\gamma^2 + |\xi|^2)^{-\frac{1}{2}} (\gamma^2 + \sum_{j,k} \mathsf{a}_{jk,\varepsilon}(t,x)\xi_j\xi_k)^{\frac{1}{2}}.$$

We fix

$$\varepsilon = 2^{-\nu},$$

and we write α_{ν} and ${\it a}_{jk,\,\nu}$ instead of $\alpha_{2^{-\nu}}$ and ${\it a}_{jk,\,2^{-\nu}}$ respectively. We set

$$W_{\nu}(t,x) = T_{\alpha_{\nu}^{-1/2}} \partial_t u_{\nu} - T_{\partial_t(\alpha_{\nu}^{-1/2})} u_{\nu},$$

$$w_{\nu}(t,x) = T_{\alpha_{\nu}^{1/2}(\gamma^2 + |\xi|^2)^{1/2}} u_{\nu},$$

$$z_{\nu}(t,x)=u_{\nu},$$

The problem Statement of the result Outline of the proof

Proof: approximate energy/3

We define

$$e_{
u}(t) = \|v_{
u}(t,\cdot)\|_{L^2}^2 + \|w_{
u}(t,\cdot)\|_{L^2}^2 + \|z_{
u}(t,\cdot)\|_{L^2}^2$$

(note that this is the analogue of Tarama's energy, where the role of ξ is now played by $2^{\nu} \cdot \text{Tarama's energy}$)

The problem Statement of the result Outline of the proof

Proof: approximate energy/3

We define

$$e_{\nu}(t) = \|v_{\nu}(t,\cdot)\|_{L^{2}}^{2} + \|w_{\nu}(t,\cdot)\|_{L^{2}}^{2} + \|z_{\nu}(t,\cdot)\|_{L^{2}}^{2}$$

(note that this is the analogue of Tarama's energy, where the role of ξ is now played by 2^{ν} (Tarama's energy) and

$$E_s(t) = \sum_{\nu=0}^{+\infty} 2^{2\nu s} e_{
u}(t).$$

The problem Statement of the result Outline of the proof

Proof: approximate energy/3

We define

$$e_{
u}(t) = \|v_{
u}(t,\cdot)\|_{L^2}^2 + \|w_{
u}(t,\cdot)\|_{L^2}^2 + \|z_{
u}(t,\cdot)\|_{L^2}^2$$

(note that this is the analogue of Tarama's energy, where the role of ξ is now played by 2^{ν} (Tarama's energy) and

$$E_s(t) = \sum_{\nu=0}^{+\infty} 2^{2\nu s} e_{
u}(t).$$

It is possible to prove that there exist constants C_s and C'_s , depending only on s, such that

$$\begin{split} & E_s(0)^{\frac{1}{2}} \leq C_s(\|u(0,\cdot)\|_{H^{s+1}} + \|\partial_t u(0,\cdot)\|_{H^s}), \\ & E_s(t)^{\frac{1}{2}} \geq C_s'(\|u(t,\cdot)\|_{H^{s+1}} + \|\partial_t u(t,\cdot)\|_{H^s}). \end{split}$$

The problem Statement of the result Outline of the proof

Proof: time derivative of the approximate energy/1

We obtain

$$\begin{split} \frac{d}{dt} \| v_{\nu}(t) \|_{L^2}^2 &= 2 \operatorname{Re} \big(v_{\nu}, \sum_{j,k} T_{\alpha_{\nu}^{-1/2}} \partial_j (T_{a_{jk}} \partial_k u_{\nu}) \big)_{L^2} \\ &+ 2 \operatorname{Re} \big(v_{\nu}, \sum_{j,k} T_{\alpha_{\nu}^{-1/2}} \partial_j ([\Delta_{\nu}, T_{a_{jk}}] \partial_k u) \big)_{L^2} \\ &+ 2 \operatorname{Re} \big(v_{\nu}, T_{\alpha_{\nu}^{-1/2}} (\tilde{L}u)_{\nu} \big)_{L^2} + Q_1, \end{split}$$

with $|\mathcal{Q}_1| \leq \mathit{Ce}_{\nu}(t)$,

The problem Statement of the result Outline of the proof

Proof: time derivative of the approximate energy/1

We obtain

$$\begin{split} \frac{d}{dt} \| v_{\nu}(t) \|_{L^{2}}^{2} &= 2 \operatorname{Re} \big(v_{\nu}, \sum_{j,k} T_{\alpha_{\nu}^{-1/2}} \partial_{j} (T_{a_{jk}} \partial_{k} u_{\nu}) \big)_{L^{2}} \\ &+ 2 \operatorname{Re} \big(v_{\nu}, \sum_{j,k} T_{\alpha_{\nu}^{-1/2}} \partial_{j} ([\Delta_{\nu}, T_{a_{jk}}] \partial_{k} u) \big)_{L^{2}} \\ &+ 2 \operatorname{Re} \big(v_{\nu}, T_{\alpha_{\nu}^{-1/2}} (\tilde{L} u)_{\nu} \big)_{L^{2}} + Q_{1}, \end{split}$$

with $|Q_1| \leq Ce_{\nu}(t)$, $\frac{d}{dt} \|w_{\nu}(t)\|_{L^2}^2 = 2 \operatorname{Re}(v_{\nu}, T_{\alpha_{\nu}^{-1/2}} T_{\alpha_{\nu}^2(\gamma^2 + |\xi|^2)} u_{\nu})_{L^2} + Q_2,$

with $|{\it Q}_2| \leq {\it Ce}_
u(t)$ and

$$\frac{d}{dt}\|z_{\nu}(t)\|_{L^{2}}^{2} \leq |2\operatorname{Re}(u_{\nu},\partial_{t}u_{\nu})_{L^{2}}| \leq Ce_{\nu}(t).$$

The problem Statement of the result Outline of the proof

Proof: time derivative of the approximate energy/2

Putting all together some terms cancel (due to the form of the energy) and we have

$$\begin{split} \frac{d}{dt} \, e_{\nu}(t) &\leq C_1 e_{\nu}(t) + C_2 (e_{\nu}(t))^{\frac{1}{2}} \, \| (\tilde{L}u)_{\nu} \|_{L^2} \\ &+ |2 \operatorname{Re} \big(v_{\nu}, \sum_{j,k} \, T_{\alpha_{\nu}^{-1/2}} \partial_j ([\Delta_{\nu}, \, T_{a_{jk}}] \partial_k u) \big)_{L^2} |. \end{split}$$

The problem Statement of the result Outline of the proof

Proof: time derivative of the approximate energy/2

Putting all together some terms cancel (due to the form of the energy) and we have

$$\begin{array}{ll} \frac{d}{dt} \, e_{\nu}(t) & \leq \ C_1 e_{\nu}(t) + C_2 (e_{\nu}(t))^{\frac{1}{2}} \, \| (\tilde{L}u)_{\nu} \|_{L^2} \\ & + |2 \operatorname{Re} \big(v_{\nu}, \sum_{j,k} \, T_{\alpha_{\nu}^{-1/2}} \partial_j ([\Delta_{\nu}, \ T_{a_{jk}}] \partial_k u) \big)_{L^2} |. \end{array}$$

It remains to estimate the term containing $\tilde{L}u$ and that one with the commutator.

The problem Statement of the result Outline of the proof

Proof: time derivative of the approximate energy/2

Putting all together some terms cancel (due to the form of the energy) and we have

$$\begin{array}{ll} \frac{d}{dt} \, e_{\nu}(t) & \leq \ C_1 e_{\nu}(t) + C_2 (e_{\nu}(t))^{\frac{1}{2}} \, \| (\tilde{L}u)_{\nu} \|_{L^2} \\ & + |2 \operatorname{Re} \big(v_{\nu}, \sum_{j,k} \, T_{\alpha_{\nu}^{-1/2}} \partial_j ([\Delta_{\nu}, \ T_{a_{jk}}] \partial_k u) \big)_{L^2} |. \end{array}$$

It remains to estimate the term containing $\tilde{L}u$ and that one with the commutator. In this computation it is used a result due to *Coifman and Meyer* '78.

We conclude that

$$\frac{d}{dt}E_{s}(t) \leq C(E_{s}(t) + (E_{s}(t))^{\frac{1}{2}} \|Lu(t)\|_{H^{s}}).$$

The energy estimate easily follows from this last inequality and Grönwall Lemma.

The problem Statement of the result Outline of the proof

Essential bibliography/1

- Coifman, Ronald R.; Meyer, Yves "Au delà des opérateurs pseudo-différentiels". Astérisque, 57. Société Mathématique de France, Paris, 1978.
- Colombini, Ferruccio; De Giorgi, Ennio; Spagnolo, Sergio "Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps". Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), no. 3, 511–559.
- Colombini, Ferruccio; Del Santo, Daniele; Fanelli, Francesco; Métivier, Guy *Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients.* Comm. Partial Differential Equations 38 (2013), no. 10, 1791–1817.
- Colombini, Ferruccio; Del Santo, Daniele; Fanelli, Francesco; Métivier, Guy A well-posedness result for hyperbolic operators with Zygmund coefficients. J. Math. Pures Appl. (9) 100 (2013), no. 4, 455–475.

The problem Statement of the result Outline of the proof

Essential bibliography/2

- Colombini, Ferruccio; Lerner, Nicolas *Hyperbolic operators with non-Lipschitz coefficients*. Duke Math. J. 77 (1995), no. 3, 657–698.
- Hurd, Albert Emerson; Sattinger, David H. *Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients*. Trans. Amer. Math. Soc. 132 (1968), 159–174.
- Tarama, Shigeo Energy estimate for wave equations with coefficients in some Besov type class. Electron. J. Differential Equations 2007, No. 85, 12 pp.

The result

Outline of the proof

Thank you for your attention!

The problem Statement of the result Outline of the proof

integral condition

It is interesting to remark that the original condition of *Colombini*, *De Giorgi*, *and Spagnolo* is an integral condition weaker than the pontwise one, i.e

$$\int_0^{T- au} |\mathsf{a}_{j,k}(t+ au) - \mathsf{a}_{j,k}(t)| \, dt \leq C | au| \log(rac{1}{| au|}+1).$$

The problem Statement of the result Outline of the proof

integral condition

It is interesting to remark that the original condition of *Colombini*, *De Giorgi*, *and Spagnolo* is an integral condition weaker than the pontwise one, i.e

$$\int_0^{T- au} |a_{j,k}(t+ au) - a_{j,k}(t)| \, dt \leq C | au| \log(rac{1}{| au|}+1).$$

Similarly the conditions given by Tarama are

$$\int_{ au}^{ au- au} |a_{j,k}(t+ au) + a_{j,k}(t- au) - 2a_{j,k}(t)| \, dt \leq C| au|,$$

and

$$\int_{ au}^{ au- au} |\mathsf{a}_{j,k}(t+ au) + \mathsf{a}_{j,k}(t- au) - 2\mathsf{a}_{j,k}(t)| \, dt \leq C | au| \log(rac{1}{| au|}+1).$$