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The problem Stnctly hyperbolic equations
The Cauch lem for strictly hyperbolic operators
Energy inequalities

Strictly hyperbolic equations

Let's consider the operator

Lu—82u—z (@) k(t, x)0x u)

J,k=1

on the strip [0, T] x R".
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The problem Strictly hyperbolic equations
for strictly hyperbolic oper

Strictly hyperbolic equations

Let's consider the operator
n
Lu=d%u— Z Ox;(ajk(t, x)0x 1)
Jok=1

on the strip [0, T] x R™. Suppose that for all (¢,x) € [0, T] x R" and for
alljk=1...n,
aj7k(t, X) = a;w-(t, X) eR.
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The problem Strictly hyperbolic equations
for strictly hyperbolic oper

Strictly hyperbolic equations

Let's consider the operator

Lu=d%u— Z Ox;(ajk(t, x)0x 1)

Jk=1

on the strip [0, T] x R™. Suppose that for all (¢,x) € [0, T] x R" and for
alljk=1...n,
aj7k(t, X) = a;w-(t, X) eR.

Suppose that L is strictly hyperbolic
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The problem i uations
for strictly hyperbolic operators

Strictly hyperbolic equations

Let's consider the operator
n
Lu=d%u— Z Ox;(ajk(t, x)0x 1)
Jok=1

on the strip [0, T] x R™. Suppose that for all (¢,x) € [0, T] x R" and for
alljk=1...n,
aj7k(t, X) = a;w-(t, X) eR.

Suppose that L is strictly hyperbolic i.e. there exist Ay > Ay > 0 such
that, for all (t,x,&) € [0, T] x R" x R",

Mol€P <D au(t, x)€ikk < Moléf.

J-k
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The problem Strictly hyperbolic
The Cauchy problem for strlctly hyperbolic operators
Energy inequalities

The Cauchy problem for strictly hyperbolic equations

We are interested in the Cauchy problem
Lu=0 in [0, T] x R",

Ule—o = U, O¢l|t—0 = i in R".
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The problem Strictly hyperbolic
The Cauchy problem for strictly hyperbolic operators
Energy inequalitie

The Cauchy problem for strictly hyperbolic equations

We are interested in the Cauchy problem
Lu=0 in [0, T] x R",

Ule—o = U, O¢l|t—0 = i in R".

Is this Cauchy problem well-posed in Sobolev spaces?
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The problem ions
strictly hyperbolic operators

The Cauchy problem for strictly hyperbolic equations

We are interested in the Cauchy problem

{ Lu=0 in [0, T] x R,

Ule—o = U, O¢l|t—0 = i in R".
Is this Cauchy problem well-posed in Sobolev spaces?

(This means that for some s € R and for all ug € H5tY uy € HS, there
exists a unique u € CO([0, T], H**1) N CY([0, T], H®) (or possibly
CO([o, T], H*+1) n CY([0, T], H*") with s* < s) in such a way that (1)
holds).
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The problem Strictly h
hyperbolic operators
Energy inequalities

Energy inequality

A key point in solving the previous problem is obtaining a so called
energy estimate.
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The problem

Energy inequalities

Energy inequality

A key point in solving the previous problem is obtaining a so called
energy estimate.

Problem

Is it possible to prove an inequality of the type

oup (luCt, =2 + [10eu(ts ) er)
T (2)
C(I[u(0, )l p+r + [10eu(0-)[[ 1 +/O ILu(T; )= dT),

for all u € C%([0, T], H>) (where possibly T* < T and s* <'s)?
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The problem

Energy inequalities

Energy inequality

A key point in solving the previous problem is obtaining a so called
energy estimate.

Problem

Is it possible to prove an inequality of the type

sup_ ([lu(t, )l + [[0eu(t, [ 1)

0<t<T
T (2)
C(u(0, )l p=er + 196 (0-)]| s +/O [Lu(T, e dT),
for all u € C%([0, T], H>) (where possibly T* < T and s* <'s)?
If s* = s, we say that in (2) there is

no loss of derivatives,
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The problem

Energy inequality

A key point in solving the previous problem is obtaining a so called
energy estimate.

Is it possible to prove an inequality of the type

sup_ ([lu(t, )l + [[0eu(t, [ 1)

0<t<T

-
C(I[u(0, )l p+r + [10eu(0-)[[ 1 +/0 ILu(T; )= dT),

for all u € C%([0, T], H>) (where possibly T* < T and s* <'s)?
If s* = s, we say that in (2) there is
no loss of derivatives,

If s* <'s, we say that in (2) there is a

finite loss of derivatives.
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The problem

Energy inequ

regularity of coefficients vs energy inequality

The focus is on the relations between the
regularity of the coefficients (with respect to time and space)
and the

existence of an energy inequality in Sobolev spaces.
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Operators with coefficients depending only on t

me known resul -
Some known results Operators with coefficients depending on t and x

Coefficients depending only on t: Lipschitz and log-Lipschitz case

Let's suppose that the coefficients depend only on time.
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Operators with coefficients depending only on t

me known resul C
Some known results Operators with coefficients depending on t and x

Coefficients depending only on t: Lipschitz and log-Lipschitz case

Let's suppose that the coefficients depend only on time.
o If the coefficients aj x are Lipschitz-continuous, i.e.

sup|aj«(t +7) — ajk(t)] < Cl7l,
t

then (2) is valid for s* = s (no loss, classical result).

D. Del Santo Energy estimates for hyperbolic operators



Some known results Operators with ing only on ¢

Operators with coefficien

Coefficients depending only on t: Lipschitz and log-Lipschitz case

Let's suppose that the coefficients depend only on time.
o If the coefficients aj x are Lipschitz-continuous, i.e.
sup |aj k(t +7) — aj.k(t)] < C|7],

t
then (2) is valid for s* = s (no loss, classical result).

o If the coefficients a; 4 are log-Lipschitz-continuous, i.e.

1
sup[ajk(t +7) = ajk(t)] < Cl]| |0g(m +1),
t

then (2) for s* < s (finite loss, Colombini, De Giorgi and Spagnolo
'79).
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Operators with coefficients depending only on t

me known resul -
Some known results Operators with coefficients depending on t and x

Coefficients depending only on t: Zygmund and log-Zygmund case

o If the coefficients aj x are Zygmund-continuous, i.e.

sup |aj k(t +7) + 3 «(t — 7) — 2a; «(t)| < C|7],
t

then (2) is valid for s* = s (no loss, Tarama '07).
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Operators with ici ing only on t

Some known results
Operators with coefficien

Coefficients depending only on t: Zygmund and log-Zygmund case

o If the coefficients aj x are Zygmund-continuous, i.e.

sup |aj k(t +7) + aj.k(t — 7) — 2a;4(8)] < C7],
t
then (2) is valid for s* = s (no loss, Tarama '07).
@ If the coefficients a; x are log-Zygmund-continuous, i.e.
1
sup |aj7k(t + 7') + aj,k(t — 7') — 2aj7k(t)| < C‘T| |og(m + 1),
t

then (2) is valid for s* < s (finite loss, Tarama '07).
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Ope

known resul . o a B
Some known results Operators with coefficients depending on t and x

Coefficients depending on t and x: Lipschitz and log-Lipschitz case

Let’s now suppose that the coefficients depend on time and space.
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Some known results

Coefficients depending on t and x: Lipschitz and log-Lipschitz case

Let’s now suppose that the coefficients depend on time and space.
o If the coefficients a; x are Lipschitz-continuous, i.e.

sup laj k(t +7,x +y) = ajk(t,x)| < C(I7| + |yl),
X

then (2) is valid for s* = s = 0 (no loss, Hurd and Sattinger '67).
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Operators with coe only on t

known resul h
Some known results Operators with coefficients depending on t and x

Coefficients depending on t and x: Lipschitz and log-Lipschitz case

Let’s now suppose that the coefficients depend on time and space.
o If the coefficients a; x are Lipschitz-continuous, i.e.

sup|aj k(t +7,x+y) = ajk(t, x)| < C(7[ + |y]),
X

then (2) is valid for s* = s = 0 (no loss, Hurd and Sattinger '67).
o If the coefficients a; 4 are log-Lipschitz-continuous, i.e.

sup [3jk(t + 7, x +y) — ajk(t, x)| < C(|7] + [y]) log( 1),
t,x

1
— +
7]+ lyl

then (2) for s* < s €] —1,0[ (finite loss, Colombini and Lerner
'95).
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Some known results

Coefficients depending on t and x: Zygmund case and log-Zygmund case

o If the coefficients a; x are Zygmund-continuous, i.e.

suplaj«(t+ 7, x+y)+aju(t+7,x—y) —2a;,(t, x)| < C(I7|+1y]),
t,x

D. Del Santo Energy estimates for hyperbolic operators



Oper i i i ont

Some known results ;
Operators with coefficients depending on t and x

Coefficients depending on t and x: Zygmund case and log-Zygmund case

o If the coefficients a; x are Zygmund-continuous, i.e.

suplaj«(t+ 7, x+y)+aju(t+7,x—y) —2a;,(t, x)| < C(I7|+1y]),
t,x

then (2) is valid for s* = s = —1/2 (no loss, but only for
up € H1/2, u € H_l/z,
Colombini, DS, Fanelli and Métivier, JMPA '13).
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Ope

known resul on
Some known results Operators with coefficients depending on t and X

Coefficients depending on t and x: Zygmund case and log-Zygmund case

o If the coefficients a; x are Zygmund-continuous, i.e.

suplaj«(t+ 7, x+y)+aju(t+7,x—y) —2a;,(t, x)| < C(I7|+1y]),
t,x

then (2) is valid for s* = s = —1/2 (no loss, but only for
up € H1/2, up € H_l/z,
Colombini, DS, Fanelli and Métivier, JMPA '13).
o If the coefficients aj x are log-Zygmund-continuous in t and

log-Lipschitz-continuous in x, i.e.

1
sup |aje(t + 7, x) + aj(t — 7, x) — 2ap(t, x)| < Go|7|log(— + 1),

t,x ||

SUP|ajk(f x+y) —ar(t,x)| < Glyl Iog(| | 1).

then (2) for s* < s €] —1,0[ (finite loss, Colombini, DS, Fanelli
and Métivier, Comm. PDE '13).
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The problem

The result

The problem

It is not clear what happens if the coefficients are depending on t and x,
they are Zygmund-continuous and s is different from —1/2.
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The result

The problem

It is not clear what happens if the coefficients are depending on t and x,
they are Zygmund-continuous and s is different from —1/2.

Conjecture

No loss in the case s =0, i.e (2) is valid with s* = s =0 and

ug € Hl7 u € L2
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The problem
Statement the result
The result Outline

The problem

It is not clear what happens if the coefficients are depending on t and x,
they are Zygmund-continuous and s is different from —1/2.

Conjecture

No loss in the case s =0, i.e (2) is valid with s* = s =0 and

ug € Hl7 u € L2

Here we present a partial answer, for coefficients which are

Zygmund-continuous in t and Lipschitz-continuous in x.
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the result
>0

The result

Statement of the result

Theorem (Colombini, DS and Fanelli)

Suppose that there exist constants Cy, C; > 0 such that, for all
j,k=1,...,nand forallT € R, y € R",

sup |aje(t + 7, x) + aj(t — 7, x) — 2a(t, x)| < Go|7],

t,x
sup a(t, x +y) — au(t, x)| < Gily|.
t,x

Then, for all fixed s € | — 1, 0], there exists a constant C > 0, depending
only on's and T, such that

sup ([lu(t, )llpstr + [|0cu(t, )| He)
0<t<T

< C([lu(0, ) mes + [[0¢u(0, )]

)
e+ / |Lu(r, Y dr),
0

for all u € C%([0, T], H*).



@casen=1, ie.
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S n the result
The result (0] of the proof

Colombini-De Giorgi-Spagnolo’s proof/1

@ casen=1, ie.
0?u — a(t)0?u = 0.
@ Consider the Fourier transform of u w.r.t. x:

v(t, &) = 0*(t,€) then v solves v 4 a(t)[¢[*v =0
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S of the result
The result Outline of the proof

Colombini-De Giorgi-Spagnolo’s proof/1

@ casen=1, ie.
0?u — a(t)0?u = 0.
@ Consider the Fourier transform of u w.r.t. x:
v(t, &) = 0*(t,€) then v solves v 4 a(t)[¢[*v =0
@ Introduce a. = p. * a, then, since a is Log-Lipschitz, we have

sup, a(t) — 2:(6)] < Celog(2 + 1),

sup, |a(t)] < Clog(% +1).
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the result
The result tline of the proof

Colombini-De Giorgi-Spagnolo’s proof/1

@ casen=1, ie.
0?u — a(t)0?u = 0.

@ Consider the Fourier transform of u w.r.t. x:

v(t, &) = 0*(t,€) then v solves v 4 a(t)[¢[*v =0
@ Introduce a. = p. * a, then, since a is Log-Lipschitz, we have

sup, [a(t) — a:(1)] < Celog(2 +1).
sup, |a(t)] < Clog(% +1).

@ Consider the approximate energy

E-(t,€) = V(1) + a=(t) € Iv(t)* + [v(1)[,
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the result
The result tline of the proof

Colombini-De Giorgi-Spagnolo’s proof/1

@ casen=1, ie.
0?u — a(t)0?u = 0.

@ Consider the Fourier transform of u w.r.t. x:

v(t, &) = 0*(t,€) then v solves v 4 a(t)[¢[*v =0
@ Introduce a. = p. * a, then, since a is Log-Lipschitz, we have

sup, |a(t) — a-(t)| < Ce Iog(% +1),
sup, |a(t)] < Clog(% +1).
@ Consider the approximate energy
E-(t,€) = V(1) + a:(0)[€[?|v(t)]* + |v(2)I%,

@ We have, uniformly in ¢,

/ (1+ |2V E(t.)dE ~ [[u(t, )2 + [Beu(t. )

2
Hs-
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S of the result
The result Outline of the proof

Colombini-De Giorgi-Spagnolo’s proof/2

o Differentiating the approximate energy and using the equation

OeEc(t,€) = 2(a=(t) — a(t)) €[ v + al(t)|€*|v]® + 2w/
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S the result
The result Outline of the proof

Colombini-De Giorgi-Spagnolo’s proof/2

o Differentiating the approximate energy and using the equation
E.(£,€) = 2(a:(t) — a())|€Pw’ + aL(£) P Iv]? + 2w/

so that, using Gronwall lemma,

E.(t,€) <E.(0,¢) exp[ (fo | dt + [¢] [, |a— aa|dr+f071dt)}
< E(0.€)exp [C((log L + 1) + [¢le(log  +1) +1)]
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e result
The result Outline of the proof

Colombini-De Giorgi-Spagnolo’s proof/2

o Differentiating the approximate energy and using the equation
E.(£,€) = 2(a:(t) — a())|€Pw’ + aL(£) P Iv]? + 2w/
so that, using Gronwall lemma,

E.(t,€) <E.(0,¢) exp[ (fo | dt + [¢] [, |a— aa|dr+f071dt)}
< E(0.€)exp [C((log L + 1) + [¢le(log  +1) +1)]

e Key point: choose ¢ = |¢|71: the approximation rate of the
coefficients depend on the variable &, i.e. on the point of the phase
space. We obtain

Ejg-1(t,€) < Ejg-1(0,€) exp(C(log([¢] + 1) + 1))
< C'Ejg-1(0,€)(1 + [¢])°.

D. Del Santo Energy estimates for hyperbolic operators



m
atement of the result
The result Outline of the proof

Tarama’s proof/1

@ casen=1, ie.
0?u — a(t)d%u = 0.
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The result

Tarama’s proof/1

@ casen=1, ie.
0?u — a(t)d%u = 0.

@ Consider the Fourier transform of u w.r.t. x:

v(t, &) = 0%(t,€) then v solves v’ + a(t)[¢]?v =0
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S n the result
The result of the proof

Tarama’s proof/1

@ casen=1, ie.
0?u — a(t)d%u = 0.

@ Consider the Fourier transform of u w.r.t. x:
v(t, &) = u*(t,€) then v solves v 4 a(t)[¢[*v =0
@ Introduce a. = g, * a, then, since a is Zygmund, we have
sup, |a — a.| < Ce,
sup, [at| < Clog(2 +1),

sup, |aZ| < C%‘
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the result
The result tline of the proof

Tarama’s proof/1

@ casen=1, ie.
0?u — a(t)d%u = 0.

@ Consider the Fourier transform of u w.r.t. x:
v(t, &) = u*(t,€) then v solves v 4 a(t)[¢[*v =0
@ Introduce a. = g, * a, then, since a is Zygmund, we have
sup, |a — a.| < Ce,
sup, [at| < Clog(2 +1),
sup, |aZ| < C%‘

@ Consider the Tarama’s approximate energy

1 /
V() + (B + ValEP v,

Es(t>§) = \/g
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S the result
The result Outline of the proof

Tarama’s proof/2

o Differentiating the approximate energy and using the equation
atEs(tvg) iS

/ a/ al

\/255 (VO + o v() (G = (o) + (a:(0) — ale)) e ) v

so that, using Gronwall lemma,
E(t.) < E0.8)exp| C((y Jy [a21+1atl? dt) + (I¢] fy |2 — 2.l di))]

< E(0,9) exp [ C(: +1¢10)]
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S the result
The result Outline of the proof

Tarama’s proof/2

o Differentiating the approximate energy and using the equation
atEs(tvg) iS

/ a/ al

\/255 (VO + o v() (G = (o) + (a:(0) — ale)) e ) v

so that, using Gronwall lemma,
E(t.6) < E(0,9)exp[CU Jy Ial1+ 12 de) + (I€] i |2 — ac] o)
< E(0,9) exp [ C(: +1¢10)]
@ Choosing also in this case ¢ = ||~ we have
E.(t,€) < CE(0,€)

and the energy estimate follows without loss of derivatives.

D. Del Santo Energy estimates for hyperbolic operators



S the result
The result Outline of the proof

Tools: Littlewood-Paley decomposition/1

Let ¢p € C*([0, +o0[,R) such that % is non-increasing and

11 19
= <t< — = > —.
P(t)=1 for 0<t< 10’ P(t)=0 for t> 10

We set, for £ € RY,
x(§) = ¥(I€)), ©(§) = x(§) — x(2¢).
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e result
The result Outline of the proof

Tools: Littlewood-Paley decomposition/1

Let ¢p € C*([0, +o0[,R) such that % is non-increasing and

11 19
= <t< — = > —.
P(t)=1 for 0<t< 10’ P(t)=0 for t> 10

We set, for £ € RY,
x(€) =v(]),  @(€) = x(&) — x(29).
Given a tempered distribution u, the dyadic blocks are defined by
Aou = x(D)u = F~H(x(€)a(€)),
Aju= (27 D)u=F Hp(27)a(€) if j=>1,

where we have denoted by F~! the inverse of the Fourier transform. We
introduce also the operator

k
Sku="y_ Aju=F M (x(27€)a(¢)).
j=0
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S n the result
The result (0] of the proof

Tools: Littlewood-Paley decomposition/2

It is well known the characterization of classical Sobolev spaces via
Littlewood-Paley decomposition: for any s e R, u € &',

ueH
if and only if

Vj, Ajuel* and Y 2% Ajulf < +oo
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S n the result
The result (0] of the proof

Tools: Littlewood-Paley decomposition/2

It is well known the characterization of classical Sobolev spaces via
Littlewood-Paley decomposition: for any s e R, u € &',

ueH
if and only if

Vj, Ajue l? and 225 Ajul)?, < 400
J ' L

Moreover, in such a case, there exists a constant C; > 1 such that

1 +oo ) +oo )
g > 2% Ajullf < lullfe < G 2% Ajulf
S j=0 j=0
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S n the result
The result (0] of the proof

Tools: Littlewood-Paley decomposition/3

Via Littlewood-Paley decomposition, we can characterize the spaces of
Lipschitz, Zygmund and log-Lipschitz functions.
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Sta res
The result Outline of the proof

Tools: Littlewood-Paley decomposition/3

Via Littlewood-Paley decomposition, we can characterize the spaces of
Lipschitz, Zygmund and log-Lipschitz functions.

Let u € L°°(RY). We have the following:

u € Lip(RY) if and only if — sup ||VSjul|i= < +00,
J

u € Zyg(RY) if and only if  sup2||Ajul|~ < +oo,
J

Siull e
u € LogLip(R?) if and only if ~ sup |VJJUHL < +o00,
J
2| Ajul| L
u € LogZyg(RY) if and only if sup M < 4o00.
J J
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S of the result
The result Outline of the proof

Tools: paradifferential calculus with parameters/1

Let v > 1 and consider ¢, € C>°(RY x R?) with the following properties

@ there exist €1 < e < 1 such that

1 for |n| <ei(y+1£]),
Uym )= { 0 for || > ea(y+ I€))
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the result
The result tline of the proof

Tools: paradifferential calculus with parameters/1

Let v > 1 and consider ¢, € C>°(RY x R?) with the following properties

@ there exist €1 < e < 1 such that

1 for |n| <ei(y+1£]),
Uym )= { 0 for || > ea(y+ I€))

e for all (8,a) € N9 x N9, there exists Cs o > 0 such that

102084 (n, )| < Caaly +1€)) 717121
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the result
The result tline of the proof

Tools: paradifferential calculus with parameters/1

Let v > 1 and consider ¢, € C>°(RY x R?) with the following properties

@ there exist €1 < e < 1 such that

1 for |n| <ei(y+1£]),
Uym )= { 0 for || > ea(y+ I€))

e for all (8,a) € N9 x N9, there exists Cs o > 0 such that

102084 (n, )| < Caaly +1€)) 717121

Define now

G¥1(x,€) = (F Mby) (%, ©),

where _7-'77_11/JAY is the inverse of the Fourier transform of 1., with respect
to the 7 variable.
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S of the result
The result Outline of the proof

Tools: paradifferential calculus with parameters/2

Let a € L. We associate to a the classical pseudodifferential symbol

Tary(%,€) = (¥ (Dx, §)a)(x,) = (G (-, €) * a)(x),

and we define the paradifferential operator associate to a as the
classical pseudodifferential operator associated to o, ., i.e.

(271r)d /R oa(x, §)a(€) d¢.

3

T u(x) = 0a(Dx)u(x) =
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S of the result
The result Outline of the proof

Tools: paradifferential calculus with parameters/2

Let a € L. We associate to a the classical pseudodifferential symbol

Tary(%,€) = (¥ (Dx, §)a)(x,) = (G (-, €) * a)(x),

and we define the paradifferential operator associate to a as the
classical pseudodifferential operator associated to o, ., i.e.

T3ulx) = 2:(DJu(x) = G [ ol (e) e

It is possible to choose 1), in such a way that T} is the usual Bony's
paraproduct operator

400
Talu = Z SkaAk+3u7
k=0
while, in the general case,
“+o00
TJu=S,_1a5,4ou+ Z Skalyisu, with pu = [log,~].
k=p
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The result

Tools: low regularity symbols and calculus/1

We deal with paradifferential operators having symbols with limited
regularity in time and space.
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Tools: low regularity symbols and calculus/1

We deal with paradifferential operators having symbols with limited
regularity in time and space.

Definition

A symbol of order m is a function a(t, x, &,~y) which is locally bounded
on [0, T] x R" x R" X [1, 4o0], of class C> with respect to £ such that,
for all @ € N", there exists C, > 0 such that, for all (t,x,&,7),

|08 a(t, x,€,7)] < Caly + [€])™ 1o,

We take now a symbol a of order m > 0, Zygmund-continuous with
respect to t, uniformly with respect to x and Lipschitz-continuous with
respect to x, uniformly with respect to t. We smooth out a with respect
to time via a convolution with a mollifier, and call a. the smoothed
symbol. We consider the classical symbol o,_ obtained from a. via
convolution with G¥.
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Tools: low regularity symbols and calculus/2

Under the previous hypotheses, one has:
|0 0. (t,x,€,7)| < Galy +IE[)m e,

|00080a (£, x,67)] < Caaly + [E])m 1A,

e 1
‘ago—atas(t7x7€7’7)‘ < Ca(7+|§|)m | ||og(g+1),

m—|a = 1
000800, (15,67 < Coaly+lgh)mIHoITE S,

e L
000 (.67 < Caly + gD,

m—|« — 1
000805z (£, ,67)] < Gy + 6D 5,

where |B| > 1 and all the constants C, and Cg ., don't depend on 7.
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Tools: low regularity symbols and calculus/3

In particular
] m—|al 1
|a§ Uatas(t’X7§77)| < C!l(’7+|£|) Iog(g—kl)
is the analogue (remember Tarama's proof) of
, 1
supal| < Clog(> +1)
t

and 1
02 002, (£,,6,7)] < Caly + €)1 2
is the analogue of

1
sup|al] < C=.
t g
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The result

Proof: approximate energy/1

Let u € C2([0, T], H).
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Proof: approximate energy/1

Let u € C3([0, T], H*®). We have

8fu = Zaj(ajk(t, x)aku) + Lu= Zaj(Tajﬁku) + ZU,

>k J>k

where B
Lu=Lu+ Z 8j((ajk - Tajk)()ku).
Jyk
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Proof: approximate energy/1

Let u € C3([0, T], H*®). We have

Ou = Zaj(ajk(t, x)Oku) + Lu = Zaj(Tajk()ku) + Lu,
Jrk Jok

where

Zu =lu+ Zaj((ajk — Tajk)()ku).
I
We apply the operator A, and we obtain
a?ul/ = Zaj(TajkakuV) + Zaj([AW Tajk]aku) + (Zu)lﬁ
Jjsk Jsk

where u, = A,u, (Lu), = A, (Lu) and [A,, Ta,] is the commutator
between the localization operator A, and the paramultiplication operator
T

ajk *
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Proof: approximate energy/2

We consider the 0-th order symbol

ac(t,x,€,7) = (P +1EP) T2 + 3 ape(t,x)EE) 1.

Jsk

D. Del Santo Energy estimates for hyperbolic operators



S n the result
The result of the proof

Proof: approximate energy/2

We consider the 0-th order symbol

ac(t,x,€,7) = (P +1EP) T2 + 3 ape(t,x)EE) 1.

Jsk

We fix
e=2"",

and we write o, and aj, ,, instead of a,—» and aj -+ respectively.
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The result of the proof

Proof: approximate energy/2

We consider the 0-th order symbol
1 1
Oés(t,X, 57 7) = (’72 + |§|2) 2 (’72 + Z ajk,s(tv X)gjgk)z .
ok

We fix
e=2"",

and we write o, and aj, ,, instead of a,—» and aj -+ respectively. We

set
V,j(t'7 X) = Ta;l/zatuy — Tat(a;l/2)ulj7

Wy(i‘,X) = Tallj/Z

(+gpys2 )

Z,,(t, X) = Uy,
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Proof: approximate energy/3

We define

eu(t) = v (t.)1Z2 + llw (8 )1E2 + [l2o (2, ) 122

(note that this is the analogue of Tarama's energy, where the role of ¢ is
now played by 2” )

D. Del Santo Energy estimates for hyperbolic operators



S the result
The result Outline of the proof

Proof: approximate energy/3

We define

eu(t) = v (t.)1Z2 + llw (8 )1E2 + [l2o (2, ) 122

(note that this is the analogue of Tarama's energy, where the role of ¢ is

now played by 2” ) and
+o0o
Eo(t) =) 2%%e,(t).
v=0
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Proof: approximate energy/3

We define

eu(t) = v (t.)1Z2 + llw (8 )1E2 + [l2o (2, ) 122

(note that this is the analogue of Tarama's energy, where the role of ¢ is

now played by 2” ) and
+o0o
Eo(t) =) 2%%e,(t).
v=0

It is possible to prove that there exist constants C; and C/, depending
only on s, such that

Nl

E(0)2 <
E(t): >

Co(llu(O, ) Hssr + 19600, [ 1),
Colllu(t, Ylper + NI0eu(t, )l he)-

[N
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Proof: time derivative of the approximate energy/1

We obtain

d
Sl @l = 2Re(vy, » T, 120 Ty ki) 12
J,k
+ QRG(VuaZ Ta;1/28j([Aw Tajk]aku))L2
J,k
=+ 2RC(VV, T —1/2(LU)D)L2 + Ql,

ay

with | @] < Ce,(t),
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Proof: time derivative of the approximate energy/1

We obtain

d
Sl @l = 2Re(vy, » T, 120 Ty ki) 12
J,k
+ QRG(VuaZ Ta;1/28j([Aw Tajk]aku))L2
J,k
=+ 2RC(VV, T —1/2(LU)D)L2 + Ql,

ay

with | @] < Ce,(t),

d
EHWD(t)H%z = 2Re(vu, Ta;l/z Ta%(72+‘5‘2)Uy)L2 + QQa

with | Q2| < Ce,(t) and

d
2 ()l < 2Re(u, 00 | < Cale).
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Proof: time derivative of the approximate energy/2

Putting all together some terms cancel (due to the form of the energy)
and we have

d

g et = Ge(t)+ Cle (o) (Lo s

+2Re(vi, Y T -120i([Ay, Toyl0ku)) o).
J,k
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Proof: time derivative of the approximate energy/2

Putting all together some terms cancel (due to the form of the energy)
and we have

Selt) < Ga(0)+ Gle (o) Lol

+2Re(vi, Y T -120i([Ay, Toyl0ku)) o).
J,k

It remains to estimate the term containing Lu and that one with the
commutator.
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Proof: time derivative of the approximate energy/2

Putting all together some terms cancel (due to the form of the energy)
and we have

d 1
o) = Geft)+ Colen(£))? [|(Lu)yli2
+2Re(vi, Y T -120i([Ay, Toyl0ku)) o).
Jrk
It remains to estimate the term containing Lu and that one with the
commutator. In this computation it is used a result due to Coifman and
Meyer '78.
We conclude that
d

S Es(t) = C(E(t) + (Es(£)2[ILu(8)lle)-

The energy estimate easily follows from this last inequality and Gronwall
Lemma.
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Thank you for your attention!
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integral condition

It is interesting to remark that the original condition of Colombini,
De Giorgi, and Spagnolo is an integral condition weaker than the
pontwise one, i.e

T—1
1
[ laiade )~ aju(e)] de < Clrltog( - +1)
0

Il
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integral condition

It is interesting to remark that the original condition of Colombini,
De Giorgi, and Spagnolo is an integral condition weaker than the
pontwise one, i.e

T—1
1
[ laiade )~ aju(e)] de < Clrltog( - +1)
0

7|
Similarly the conditions given by Tarama are
T—7
/ |aj7k(t+7)+ajvk(t77)72aj7k(t)|dt§ C|7'|,
-
and

T—71
1
/ e+ 7) + aa(t =) = 22,(8) di < Clrllog( +1).
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