On the Sobolev quotient in sub-Riemannian geometry

Joint work with J.H.Cheng and P.Yang

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020

The Yamabe problem

The Yamabe problem

On compact Riemannian manifolds of dimension $n \geq 3$, Yamabe in 1960 posed the problem of finding conformal metrics with constant scalar curvature.

The Yamabe problem

On compact Riemannian manifolds of dimension $n \geq 3$, Yamabe in 1960 posed the problem of finding conformal metrics with constant scalar curvature.

This is a conformal generalization of the Uniformization problem, and Yamabe intended to use it as a step to solve Poincaré's conjecture.

The Yamabe problem

On compact Riemannian manifolds of dimension $n \geq 3$, Yamabe in 1960 posed the problem of finding conformal metrics with constant scalar curvature.

This is a conformal generalization of the Uniformization problem, and Yamabe intended to use it as a step to solve Poincaré's conjecture.

If R_{g} is the scalar curvature, setting $\tilde{g}(x)=\lambda(x) g(x)=u(x)^{\frac{4}{n-2}} g(x)$, $u(x)$ one has to find on M a positive solution of

$$
(Y) \quad-c_{n} \Delta u+R_{g} u=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R} .
$$

The Sobolev-Yamabe quotient

The Sobolev-Yamabe quotient

Recall the equation
(Y) $\quad-c_{n} \Delta u+R_{g} u=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}$.

The Sobolev-Yamabe quotient

Recall the equation
(Y) $\quad-c_{n} \Delta u+R_{g} u=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}$.

Considering \bar{R} as a Lagrange multiplier, one can try to find solutions by minimizing the Sobolev-Yamabe quotient

$$
Q_{S Y}(u)=\frac{\int_{M}\left(c_{n}|\nabla u|^{2}+R_{g} u^{2}\right) d V}{\left(\int_{M}|u|^{2^{*}} d V\right)^{\frac{2}{2^{*}}}} ; \quad 2^{*}=\frac{2 n}{n-2}
$$

The Sobolev-Yamabe quotient

Recall the equation
(Y) $\quad-c_{n} \Delta u+R_{g} u=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}$.

Considering \bar{R} as a Lagrange multiplier, one can try to find solutions by minimizing the Sobolev-Yamabe quotient

$$
Q_{S Y}(u)=\frac{\int_{M}\left(c_{n}|\nabla u|^{2}+R_{g} u^{2}\right) d V}{\left(\int_{M}|u|^{2^{*}} d V\right)^{\frac{2}{2^{*}}}} ; \quad 2^{*}=\frac{2 n}{n-2}
$$

The Sobolev-Yamabe constant is defined as

$$
Y(M,[g])=\inf _{u \neq 0} Q_{S Y}(u)
$$

The Sobolev-Yamabe quotient

Recall the equation
(Y) $\quad-c_{n} \Delta u+R_{g} u=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}$.

Considering \bar{R} as a Lagrange multiplier, one can try to find solutions by minimizing the Sobolev-Yamabe quotient

$$
Q_{S Y}(u)=\frac{\int_{M}\left(c_{n}|\nabla u|^{2}+R_{g} u^{2}\right) d V}{\left(\int_{M}|u|^{2^{*}} d V\right)^{\frac{2}{2^{*}}}} ; \quad 2^{*}=\frac{2 n}{n-2}
$$

The Sobolev-Yamabe constant is defined as

$$
Y(M,[g])=\inf _{u \neq 0} Q_{S Y}(u)
$$

The number $Y(M,[g])$ depends only on the conformal class $[g]$ of g.

The Sobolev-Yamabe quotient

Recall the equation

$$
(Y) \quad-c_{n} \Delta u+R_{g} u=\bar{R} u^{\frac{n+2}{n-2}} ; \quad c_{n}=4 \frac{n-1}{n-2}, \quad \bar{R} \in \mathbb{R}
$$

Considering \bar{R} as a Lagrange multiplier, one can try to find solutions by minimizing the Sobolev-Yamabe quotient

$$
Q_{S Y}(u)=\frac{\int_{M}\left(c_{n}|\nabla u|^{2}+R_{g} u^{2}\right) d V}{\left(\int_{M}|u|^{2^{*}} d V\right)^{\frac{2}{2^{*}}}} ; \quad 2^{*}=\frac{2 n}{n-2}
$$

The Sobolev-Yamabe constant is defined as

$$
Y(M,[g])=\inf _{u \neq 0} Q_{S Y}(u)
$$

The number $Y(M,[g])$ depends only on the conformal class $[g]$ of g.
$(M,[g])$ is said to be of negative, zero or positive Yamabe class when $Y(M,[g])$ is negative, zero or positive.

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

In \mathbb{R}^{n} one has the Sobolev-Gagliardo-Nirenberg inequality

$$
\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

In \mathbb{R}^{n} one has the Sobolev-Gagliardo-Nirenberg inequality

$$
\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

As for $Y(M,[g])$, define the Sobolev quotient $S_{n}=\inf _{u} \frac{\int_{\mathbb{R}^{n} n} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}}$.

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

In \mathbb{R}^{n} one has the Sobolev-Gagliardo-Nirenberg inequality

$$
\|u\|_{L^{2^{*}\left(\mathbb{R}^{n}\right)}}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

As for $Y(M,[g])$, define the Sobolev quotient $S_{n}=\inf _{u} \frac{\int_{\mathbb{R}^{n}} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}}$.
([Aubin, '76], [Talenti, '76]) Completing $C_{c}^{\infty}\left(\mathbb{R}^{n}\right), S_{n}$ is attained by

$$
U_{p, \lambda}(x):=\frac{\lambda^{\frac{n-2}{2}}}{\left(1+\lambda^{2}|x-p|^{2}\right)^{\frac{n-2}{2}}} ; \quad p \in \mathbb{R}^{n}, \lambda>0
$$

The Sobolev quotient in $\mathbb{R}^{n}(n \geq 3)$

In \mathbb{R}^{n} one has the Sobolev-Gagliardo-Nirenberg inequality

$$
\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2} \leq B_{n} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x ; \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

As for $Y(M,[g])$, define the Sobolev quotient $S_{n}=\inf _{u} \frac{\int_{\mathbb{R}^{n}} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}}$.
([Aubin, '76], [Talenti, '76]) Completing $C_{c}^{\infty}\left(\mathbb{R}^{n}\right), S_{n}$ is attained by

$$
U_{p, \lambda}(x):=\frac{\lambda^{\frac{n-2}{2}}}{\left(1+\lambda^{2}|x-p|^{2}\right)^{\frac{n-2}{2}}} ; \quad p \in \mathbb{R}^{n}, \lambda>0
$$

- Since S^{n} is conformal to \mathbb{R}^{n}, one has that $Y\left(S^{n},\left[g_{S^{n}}\right]\right)=S_{n}$.

The Sobolev quotient of domains of \mathbb{R}^{n}

The Sobolev quotient of domains of \mathbb{R}^{n}

Also for a (say, bounded smooth) domain $\Omega \subseteq \mathbb{R}^{n}$ one can consider the Sobolev quotient for functions supported in Ω

$$
\inf _{u \in C_{c}^{\infty}(\Omega)} \frac{\int_{\mathbb{R}^{n}} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2}} .
$$

The Sobolev quotient of domains of \mathbb{R}^{n}

Also for a (say, bounded smooth) domain $\Omega \subseteq \mathbb{R}^{n}$ one can consider the Sobolev quotient for functions supported in Ω

$$
\inf _{u \in C_{c}^{\infty}(\Omega)} \frac{\int_{\mathbb{R}^{n}} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2}} .
$$

In this case the infimum coincides with S_{n}, but it is never attained because of the lack of compactness of the embedding.

The Sobolev quotient of domains of \mathbb{R}^{n}

Also for a (say, bounded smooth) domain $\Omega \subseteq \mathbb{R}^{n}$ one can consider the Sobolev quotient for functions supported in Ω

$$
\inf _{u \in C_{c}^{\infty}(\Omega)} \frac{\int_{\mathbb{R}^{n}} c_{n}|\nabla u|^{2} d x}{\|u\|_{L^{2^{*}}\left(\mathbb{R}^{n}\right)}^{2}} .
$$

In this case the infimum coincides with S_{n}, but it is never attained because of the lack of compactness of the embedding.

Minimizing sequences u_{n} tend to concentrate indefinitely inside Ω.

Brief history on the Yamabe problem

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular for negative and zero Yamabe class.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular for negative and zero Yamabe class.
- In 1976 Aubin proved that (Y) is solvable provided $Y(M,[g])<S_{n}$.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular for negative and zero Yamabe class.
- In 1976 Aubin proved that (Y) is solvable provided $Y(M,[g])<S_{n}$. He also verified this inequality when $n \geq 6$ and (M, g) is not locally conformally flat, unless $(M, g) \simeq\left(S^{n}, g_{S^{n}}\right)$.

Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y) by subcritical approximation.
- In 1968 Trudinger proved that (Y) is solvable provided $Y(M,[g]) \leq \varepsilon_{n}$ for some $\varepsilon_{n}>0$. In particular for negative and zero Yamabe class.
- In 1976 Aubin proved that (Y) is solvable provided $Y(M,[g])<S_{n}$. He also verified this inequality when $n \geq 6$ and (M, g) is not locally conformally flat, unless $(M, g) \simeq\left(S^{n}, g_{S^{n}}\right)$.
- In 1984 Schoen proved that $Y(M,[g])<S_{n}$ in all other cases, i.e. $n \leq 5$ or (M, g) locally conformally flat, unless $(M, g) \simeq\left(S^{n}, g_{S^{n}}\right)$.

On the inequality $Y(M,[g])<S_{n}$

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics:

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p, \lambda}$ then

$$
L_{g} u:=-c_{n} \Delta u+R_{g} u \simeq U_{p, \lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_{p} .
$$

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p, \lambda}$ then

$$
L_{g} u:=-c_{n} \Delta u+R_{g} u \simeq U_{p, \lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_{p} .
$$

At large scales an approximate solution looks like the Green's function G_{p} of the operator L_{g}.

On the inequality $Y(M,[g])<S_{n}$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p, \lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M, g) \simeq \mathbb{R}^{n}$ and since $U_{p, \lambda}$ is highly concentrated, $Q_{S Y}\left(U_{p, \lambda}\right) \simeq S_{n}$, with small correction terms due to the geometry of M.

Since $U_{p, \lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more localized in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{\left|W_{g}\right|^{2}(p)}{\lambda^{4}}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p, \lambda}$ then

$$
L_{g} u:=-c_{n} \Delta u+R_{g} u \simeq U_{p, \lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_{p} .
$$

At large scales an approximate solution looks like the Green's function G_{p} of the operator L_{g}. If $G_{p} \simeq \frac{1}{|x|^{n-2}}+A$ at p, the correction is $-A / \lambda^{n-2}$.

A brief excursion in general relativity

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.
A manifold $\left(N^{3}, \tilde{g}\right)$ is asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \backslash K$ (called end) is diffeomorphic to $\mathbb{R}^{3} \backslash B_{1}(0)$.

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.
A manifold $\left(N^{3}, \tilde{g}\right)$ is asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \backslash K$ (called end) is diffeomorphic to $\mathbb{R}^{3} \backslash B_{1}(0)$. It is required that the metric satisfies

$$
\tilde{g}_{i j} \rightarrow \delta_{i j} \quad \text { at infinity } \quad \text { (with some rate). }
$$

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.
A manifold $\left(N^{3}, \tilde{g}\right)$ is asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \backslash K$ (called end) is diffeomorphic to $\mathbb{R}^{3} \backslash B_{1}(0)$. It is required that the metric satisfies

$$
\tilde{g}_{i j} \rightarrow \delta_{i j} \quad \text { at infinity } \quad \text { (with some rate). }
$$

Such manifolds describe initial data sets for isolated gravitational systems, and a similar definition holds for multiple ends.

Some examples

Some examples

Example 1: Schwartzschild metric (two ends).

Some examples

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m.

Some examples

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m. In polar coordinates (r, ξ) the expression is

$$
\tilde{g}_{S c h w}=\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \xi^{2}\right)
$$

Some examples

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m. In polar coordinates (r, ξ) the expression is

$$
\tilde{g}_{S c h w}=\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \xi^{2}\right)
$$

At $r=\frac{m}{2}$ there is a minimal surface, representing the event horizon.

Some examples

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m. In polar coordinates (r, ξ) the expression is

$$
\tilde{g}_{S c h w}=\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \xi^{2}\right)
$$

At $r=\frac{m}{2}$ there is a minimal surface, representing the event horizon.

Example 2: Conformal blow-ups.

Some examples

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m. In polar coordinates (r, ξ) the expression is

$$
\tilde{g}_{S c h w}=\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \xi^{2}\right)
$$

At $r=\frac{m}{2}$ there is a minimal surface, representing the event horizon.

Example 2: Conformal blow-ups. Given a compact Riemannian three-manifold (M, g) and $p \in M$, one can consider a conformal metric on \tilde{g} on $M \backslash\{p\}$ of the following form

$$
\tilde{g}=f(x) g ; \quad f(x) \simeq \frac{1}{d(x, p)^{4}}
$$

Some examples

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m. In polar coordinates (r, ξ) the expression is

$$
\tilde{g}_{S c h w}=\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \xi^{2}\right)
$$

At $r=\frac{m}{2}$ there is a minimal surface, representing the event horizon.

Example 2: Conformal blow-ups. Given a compact Riemannian three-manifold (M, g) and $p \in M$, one can consider a conformal metric on \tilde{g} on $M \backslash\{p\}$ of the following form

$$
\tilde{g}=f(x) g ; \quad f(x) \simeq \frac{1}{d(x, p)^{4}}
$$

Then, in normal coordinates x at p, setting $y=\frac{x}{|x|^{2}}$ (Kelvin inversion) one has an asymptotically flat manifold in y-coordinates

$$
\tilde{g}(x) \simeq \frac{d x^{2}}{|x|^{4}} \simeq d y^{2}, \quad(y \text { large })
$$

Einstein's equation in vacuum

Einstein's equation in vacuum

It governs the structure of space-time according to general relativity

Einstein's equation in vacuum

It governs the structure of space-time according to general relativity
(Einstein tensor) $\quad E_{i j}:=R_{i j}-\frac{1}{2} R_{g} g_{i j}=0$.

Einstein's equation in vacuum

It governs the structure of space-time according to general relativity

$$
\text { (Einstein tensor) } \quad E_{i j}:=R_{i j}-\frac{1}{2} R_{g} g_{i j}=0
$$

Here $R_{i j}$ is the Ricci tensor, and R_{g} the scalar curvature.

Einstein's equation in vacuum

It governs the structure of space-time according to general relativity

$$
\text { (Einstein tensor) } \quad E_{i j}:=R_{i j}-\frac{1}{2} R_{g} g_{i j}=0
$$

Here $R_{i j}$ is the Ricci tensor, and R_{g} the scalar curvature.
This equation is variational, with Euler-Lagrange functional given by

$$
\mathcal{A}(g):=\int_{M} R_{g} d V_{g} \quad \text { Einstein-Hilbert functional. }
$$

Einstein's equation in vacuum

It governs the structure of space-time according to general relativity

$$
\text { (Einstein tensor) } \quad E_{i j}:=R_{i j}-\frac{1}{2} R_{g} g_{i j}=0
$$

Here $R_{i j}$ is the Ricci tensor, and R_{g} the scalar curvature.
This equation is variational, with Euler-Lagrange functional given by

$$
\mathcal{A}(g):=\int_{M} R_{g} d V_{g} \quad \text { Einstein-Hilbert functional. }
$$

In fact, one has

$$
\frac{d}{d g}\left(R_{g} d V_{g}\right)[h]=-\left(h^{i j} E_{i j}+\operatorname{div} X\right) d V_{g}
$$

where X is some vector field.

The mass of an asymptotically flat manifold

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity)

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$
\frac{d}{d g}(\mathcal{A}(g)+m(g))[h]=\int_{M} h^{i j} E_{i j} d V .
$$

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$
\frac{d}{d g}(\mathcal{A}(g)+m(g))[h]=\int_{M} h^{i j} E_{i j} d V
$$

The quantity $m(g)$, called $A D M$ mass ([ADM, '60]), is defined as

$$
m(g):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} g_{j k}-\partial_{j} g_{k k}\right) \nu^{j} d \sigma
$$

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$
\frac{d}{d g}(\mathcal{A}(g)+m(g))[h]=\int_{M} h^{i j} E_{i j} d V
$$

The quantity $m(g)$, called $A D M$ mass ([ADM, '60]), is defined as

$$
m(g):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} g_{j k}-\partial_{j} g_{k k}\right) \nu^{j} d \sigma
$$

Example 1: Schwartzschild. $m_{A D M}=$ black-hole mass.

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$
\frac{d}{d g}(\mathcal{A}(g)+m(g))[h]=\int_{M} h^{i j} E_{i j} d V
$$

The quantity $m(g)$, called $A D M$ mass ([ADM, '60]), is defined as

$$
m(g):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} g_{j k}-\partial_{j} g_{k k}\right) \nu^{j} d \sigma
$$

Example 1: Schwartzschild. $m_{A D M}=$ black-hole mass.
Example 2: Conformal blow-ups. If G_{p} is the Green's function of an elliptic operator on \hat{M} with pole at p, then $G_{p}(x) \simeq d(x, p)^{-1}$.

The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$
\frac{d}{d g}(\mathcal{A}(g)+m(g))[h]=\int_{M} h^{i j} E_{i j} d V
$$

The quantity $m(g)$, called $A D M$ mass ([ADM, '60]), is defined as

$$
m(g):=\lim _{r \rightarrow \infty} \oint_{S_{r}}\left(\partial_{k} g_{j k}-\partial_{j} g_{k k}\right) \nu^{j} d \sigma
$$

Example 1: Schwartzschild. $m_{A D M}=$ black-hole mass.
Example 2: Conformal blow-ups. If G_{p} is the Green's function of an elliptic operator on \hat{M} with pole at p, then $G_{p}(x) \simeq d(x, p)^{-1}$. If $f(x)=G_{p}^{4} \simeq d(x, p)^{-4}$ and $\tilde{g}(x)=f(x) g(x)$, then

$$
m_{A D M}=\lim _{x \rightarrow p}\left(G_{p}(x)-\frac{1}{d(x, p)}\right)=A
$$

The Positive Mass Theorem

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79 ('81, '17)])

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79 ('81, '17)])
If $R_{g} \geq 0$ then $m(g) \geq 0$.

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79 ('81, '17)])
If $R_{g} \geq 0$ then $m(g) \geq 0$. In case $m(g)=0$, then (M, g) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79 ('81, '17)])
If $R_{g} \geq 0$ then $m(g) \geq 0$. In case $m(g)=0$, then (M, g) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

Physically, this means that a positive local energy density implies a positive global energy for the system.

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79 ('81, '17)])

If $R_{g} \geq 0$ then $m(g) \geq 0$. In case $m(g)=0$, then (M, g) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

Physically, this means that a positive local energy density implies a positive global energy for the system. (But one cannot just integrate!)

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79 ('81, '17)])
If $R_{g} \geq 0$ then $m(g) \geq 0$. In case $m(g)=0$, then (M, g) is isometric to the flat Euclidean space $\left(\mathbb{R}^{3}, d x^{2}\right)$.

Physically, this means that a positive local energy density implies a positive global energy for the system. (But one cannot just integrate!)

The proof used the construction of stable asymptotically planar minimal surfaces assuming $m<0$, obtaining then a contradiction from the second variation formula using $R_{g} \geq 0$.

CR manifolds

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.
We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$. Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.
We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$.
Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

A contact form θ is a 1 -form annihilating ξ

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.

We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$. Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

A contact form θ is a 1-form annihilating ξ : we assume that $\theta \wedge d \theta \neq 0$ everywhere on M (pseudoconvexity).

CR manifolds

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ.

We also have a CR structure (complex rotation) $J: \xi \rightarrow \xi$ s.t. $J^{2}=-1$. Given J as above, we have locally a vector field Z_{1} such that

$$
J Z_{1}=i Z_{1} ; \quad J Z_{\overline{1}}=-i Z_{\overline{1}} \quad \text { where } \quad Z_{\overline{1}}=\overline{\left(Z_{1}\right)}
$$

A contact form θ is a 1 -form annihilating ξ : we assume that $\theta \wedge d \theta \neq 0$ everywhere on M (pseudoconvexity).
This condition is quite important for the study of biholomorphic mappings and the $\bar{\partial}$-Neumann problem ([Beals-Fefferman-Grossman, '83]).

Examples

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1}$.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1} . \quad \stackrel{\circ}{\theta}=d t+i z d \bar{z}-i \bar{z} d z$.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1} . \quad \stackrel{\circ}{\theta}=d t+i z d \bar{z}-i \bar{z} d z$.

Boundaries of complex domains.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1} . \quad \stackrel{\circ}{\theta}=d t+i z d \bar{z}-i \bar{z} d z$.

Boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^{2}$ and J_{2} the standard complex rotation in \mathbb{C}^{2}.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1} . \quad \stackrel{\circ}{\theta}=d t+i z d \bar{z}-i \bar{z} d z$.

Boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^{2}$ and J_{2} the standard complex rotation in \mathbb{C}^{2}. Given $p \in \partial \Omega$ one can consider the subset ξ_{p} of $T_{p} \partial \Omega$ which is invariant by J_{2}.

Examples

The Heisenberg group (flat model) $\mathbb{H}^{1}=\{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$
\stackrel{\circ}{Z}_{1}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}\right) ; \quad \stackrel{\circ}{Z}_{\overline{1}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \bar{z}}-i z \frac{\partial}{\partial t}\right),
$$

ξ_{0} is spanned by real and imaginary parts of $\stackrel{\circ}{Z}_{1}$. The standard CR structure $J_{0}: \xi_{0} \rightarrow \xi_{0}$ verifies $J_{0} \stackrel{\circ}{Z}_{1}=i \stackrel{\circ}{Z}_{1} . \quad \stackrel{\circ}{\theta}=d t+i z d \bar{z}-i \bar{z} d z$.

Boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^{2}$ and J_{2} the standard complex rotation in \mathbb{C}^{2}. Given $p \in \partial \Omega$ one can consider the subset ξ_{p} of $T_{p} \partial \Omega$ which is invariant by J_{2}. We take ξ_{p} as contact distribution, and $\left.J\right|_{\xi_{p}}$ as the CR structure J.

The Webster curvature of a CR three-manifold

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3} .
$$

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : roughly, the laplacian in the contact directions

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : roughly, the laplacian in the contact directions (use Hörmander's theory (commutators) to recover regularity).

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : roughly, the laplacian in the contact directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and try to uniformize W as we did for the scalar curvature.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : roughly, the laplacian in the contact directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and try to uniformize W as we did for the scalar curvature. In real dimension $n \geq 5$ Jerison and Lee (1989) proved the counterparts of Trudinger and Aubin's results.

The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta}=u^{2} \theta$, then $W_{\hat{\theta}}$ is given by

$$
-4 \Delta_{b} u+W_{\theta} u=W_{\hat{\theta}} u^{3}
$$

Here Δ_{b} is the sub-laplacian on M : roughly, the laplacian in the contact directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and try to uniformize W as we did for the scalar curvature. In real dimension $n \geq 5$ Jerison and Lee (1989) proved the counterparts of Trudinger and Aubin's results. In real dimension $n=3$ non-minimal solutions were found in [Gamara (et al.), '01].

Green's function and mass in three dimensions (CR)

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq 1 / \rho^{2}+A,
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq 1 / \rho^{2}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq 1 / \rho^{2}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]).

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq 1 / \rho^{2}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P=\Delta_{b}^{2}+$ l.o.t. which plays a role here.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq 1 / \rho^{2}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P=\Delta_{b}^{2}+$ l.o.t. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12])

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq 1 / \rho^{2}+A,
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P=\Delta_{b}^{2}+$ l.o.t. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^{3} be a compact CR manifold.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq 1 / \rho^{2}+A
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P=\Delta_{b}^{2}+$ l.o.t. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^{3} be a compact CR manifold. If $P \geq 0$ and $W>0$, then M embeds into some \mathbb{C}^{N}.

Green's function and mass in three dimensions (CR)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$
G_{p} \simeq 1 / \rho^{2}+A,
$$

where $\rho^{4}(z, t)=|z|^{4}+t^{2},(z, t) \in \mathbb{H}^{1}$ is the homogeneous distance. Blowing-up the contact form θ using G_{p}, we obtain an asymptotically (Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is the embeddability of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P=\Delta_{b}^{2}+$ l.o.t. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^{3} be a compact CR manifold. If $P \geq 0$ and $W>0$, then M embeds into some \mathbb{C}^{N}.

More relations between P and embeddability properties of CR manifolds in [Chanillo-Case-Yang, '16], [Takeuchi, '19].

A positive mass theorem in CR geometry

A positive mass theorem in CR geometry

Theorem 1 ([Cheng-M.-Yang, '17])

A positive mass theorem in CR geometry

Theorem 1 (|Cheng-M.-Yang, '17|)

Let (M^{3}, J, θ) be a compact CR manifold.

A positive mass theorem in CR geometry

Theorem 1 (|Cheng-M.-Yang, '17])

Let (M^{3}, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative.

A positive mass theorem in CR geometry

Theorem 1 (|Cheng-M.-Yang, '17])

Let (M^{3}, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p.

A positive mass theorem in CR geometry

Theorem 1 ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

A positive mass theorem in CR geometry

Theorem 1 ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;
(b) if $m=0,(M, J, \theta)$ is conformally equivalent to a standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

A positive mass theorem in CR geometry

Theorem 1 ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;
(b) if $m=0,(M, J, \theta)$ is conformally equivalent to a standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

- The proof uses a tricky integration by parts

A positive mass theorem in CR geometry

Theorem 1 ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;
(b) if $m=0,(M, J, \theta)$ is conformally equivalent to a standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

- The proof uses a tricky integration by parts: the main idea was to bring-in the Paneitz operator to write the mass as sum of squares.

A positive mass theorem in CR geometry

Theorem 1 ([Cheng-M.-Yang, '17])

Let $\left(M^{3}, J, \theta\right)$ be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then
(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;
(b) if $m=0,(M, J, \theta)$ is conformally equivalent to a standard $S^{3}\left(\simeq \mathbb{H}^{1}\right)$.

- The proof uses a tricky integration by parts: the main idea was to bring-in the Paneitz operator to write the mass as sum of squares.
- Positivity of the mass implies that the Sobolev-Webster quotient of the manifold is lower than that of the sphere, and minimizers exist.

On the positivity condition for the Paneitz operator

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_{s}^{3}, from [H.Rossi, '65]

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_{s}^{3}, from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^{3} but a distorted complex rotation $J_{(s)}$ for $s \in(-\varepsilon, \varepsilon)$

$$
J_{(s)}\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)=i\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)
$$

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_{s}^{3}, from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^{3} but a distorted complex rotation $J_{(s)}$ for $s \in(-\varepsilon, \varepsilon)$

$$
J_{(s)}\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)=i\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)
$$

In these cases the Paneitz operator cannot be positive-definite.

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_{s}^{3}, from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^{3} but a distorted complex rotation $J_{(s)}$ for $s \in(-\varepsilon, \varepsilon)$

$$
J_{(s)}\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)=i\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)
$$

In these cases the Paneitz operator cannot be positive-definite.
Theorem 2 ([Cheng-M.-Yang, '19])

On the positivity condition for the Paneitz operator

Consider S^{3} in \mathbb{C}^{2}. Its standard $C R$ structure $J_{(0)}$ is given by

$$
J_{(0)} Z_{1}^{S^{3}}=i Z_{1}^{S^{3}} ; \quad Z_{1}^{S^{3}}=\bar{z}^{2} \frac{\partial}{\partial z^{1}}-\bar{z}^{1} \frac{\partial}{\partial z^{2}}
$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_{s}^{3}, from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^{3} but a distorted complex rotation $J_{(s)}$ for $s \in(-\varepsilon, \varepsilon)$

$$
J_{(s)}\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)=i\left(Z_{1}^{S^{3}}+s \bar{Z}_{1}^{S^{3}}\right)
$$

In these cases the Paneitz operator cannot be positive-definite.
Theorem 2 ([Cheng-M.-Yang, '19])
For small $s \neq 0$, the CR mass of S_{s}^{3} is negative $\left(m_{s} \simeq-18 \pi s^{2}\right)$.

Some ideas of the proof

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function).

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^{3}$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^{2}}+A_{(s)}$, with $A_{(s)}$ unknown.

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^{3}$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^{2}}+A_{(s)}$, with $A_{(s)}$ unknown.

On the other hand, it is possible to Taylor-expand in s the equation

$$
-4 \Delta_{b}^{(s)} G_{(s)}+W_{(s)} G_{(s)}=\delta_{p}
$$

away from p, in the standard coordinates of \mathbb{C}^{2}.

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^{3}$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^{2}}+A_{(s)}$, with $A_{(s)}$ unknown.

On the other hand, it is possible to Taylor-expand in s the equation

$$
-4 \Delta_{b}^{(s)} G_{(s)}+W_{(s)} G_{(s)}=\delta_{p}
$$

away from p, in the standard coordinates of \mathbb{C}^{2}.

One then needs to verify that the two expansions match, obtaining then the asymptotic behaviour for $s \rightarrow 0$ of $A_{(s)}$, proportional to the mass. \square

CR Sobolev quotient of Rossi spheres

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_{s}^{3} it has low Sobolev-Webster quotient also on the standard $S^{3}=S_{0}^{3}$.

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_{s}^{3} it has low Sobolev-Webster quotient also on the standard $S^{3}=S_{0}^{3}$.
- Minima of the quotient on S_{0}^{3} were classifed in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti functions: call them $U_{\lambda}^{C R}(\lambda>0)$.

CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, '19])
For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^{3}).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_{s}^{3} it has low Sobolev-Webster quotient also on the standard $S^{3}=S_{0}^{3}$.
- Minima of the quotient on S_{0}^{3} were classifed in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti functions: call them $U_{\lambda}^{C R}(\lambda>0)$.
- For $|s| \neq 0$ small, the Webster quotient of the functions $U_{\lambda}^{C R}$ has a profile of this kind, for λ in a fixed compact set of $(0, \infty)$

CR Sobolev quotient of Rossi spheres

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

For s fixed and λ large (depending on s) it is possible to show that $Q_{S W}^{(s)}\left(U_{\lambda}^{C R}\right) \simeq Q_{S W}^{(0)}\left(S^{3}\right)-\frac{m_{(s)}}{\lambda^{2}}+O\left(\lambda^{-3}\right)$, which is larger than $Q_{S W}^{(0)}\left(S^{3}\right)$ since the mass $m_{(s)}$ is negative.

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

For s fixed and λ large (depending on s) it is possible to show that $Q_{S W}^{(s)}\left(U_{\lambda}^{C R}\right) \simeq Q_{S W}^{(0)}\left(S^{3}\right)-\frac{m_{(s)}}{\lambda^{2}}+O\left(\lambda^{-3}\right)$, which is larger than $Q_{S W}^{(0)}\left(S^{3}\right)$ since the mass $m_{(s)}$ is negative.

However in this way we cannot guarantee high energy for all values of λ : some intermediate range is missing.

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

For s fixed and λ large (depending on s) it is possible to show that $Q_{S W}^{(s)}\left(U_{\lambda}^{C R}\right) \simeq Q_{S W}^{(0)}\left(S^{3}\right)-\frac{m_{(s)}}{\lambda^{2}}+O\left(\lambda^{-3}\right)$, which is larger than $Q_{S W}^{(0)}\left(S^{3}\right)$ since the mass $m_{(s)}$ is negative.

However in this way we cannot guarantee high energy for all values of λ : some intermediate range is missing. To cover that too, we exploit an isomorphism between S_{+s}^{3} and S_{-s}^{3}.

CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the Sobolev sense to functions $U_{\lambda}^{C R}$ with λ large (λ small is analogous).

For s fixed and λ large (depending on s) it is possible to show that $Q_{S W}^{(s)}\left(U_{\lambda}^{C R}\right) \simeq Q_{S W}^{(0)}\left(S^{3}\right)-\frac{m_{(s)}}{\lambda^{2}}+O\left(\lambda^{-3}\right)$, which is larger than $Q_{S W}^{(0)}\left(S^{3}\right)$ since the mass $m_{(s)}$ is negative.

However in this way we cannot guarantee high energy for all values of λ : some intermediate range is missing. To cover that too, we exploit an isomorphism between S_{+s}^{3} and S_{-s}^{3}. By evenness in the parameter s, this implies that indeed

$$
Q_{S W}^{(s)}\left(U_{\lambda}^{C R}\right) \simeq Q_{S W}^{(0)}\left(S^{3}\right)-\frac{m_{(s)}}{\lambda^{2}}+O\left(s^{2} \lambda^{-3}\right)
$$

proving a strict inequality for all λ 's.

Comments

Comments

We have seen that the CR Sobolev quotient of S_{s}^{3}, a closed manifold, behaves like that of a domain in \mathbb{R}^{n}.

Comments

We have seen that the CR Sobolev quotient of S_{s}^{3}, a closed manifold, behaves like that of a domain in \mathbb{R}^{n}. This fact seems to be tightly related to the non-embeddability of Rossi spheres.

Comments

We have seen that the CR Sobolev quotient of S_{s}^{3}, a closed manifold, behaves like that of a domain in \mathbb{R}^{n}. This fact seems to be tightly related to the non-embeddability of Rossi spheres.

To understand the phenomenon more in general, recall that the standard metric of S^{n} is a saddle point of the Einstein-Hilbert functional

$$
g \quad \longrightarrow \quad \int_{S^{n}} R_{g} d V_{g}
$$

Comments

We have seen that the CR Sobolev quotient of S_{s}^{3}, a closed manifold, behaves like that of a domain in \mathbb{R}^{n}. This fact seems to be tightly related to the non-embeddability of Rossi spheres.

To understand the phenomenon more in general, recall that the standard metric of S^{n} is a saddle point of the Einstein-Hilbert functional

$$
g \quad \longrightarrow \quad \int_{S^{n}} R_{g} d V_{g}
$$

It is a minimum in the conformal class and a maximum outside of it.

Comments

We have seen that the CR Sobolev quotient of S_{s}^{3}, a closed manifold, behaves like that of a domain in \mathbb{R}^{n}. This fact seems to be tightly related to the non-embeddability of Rossi spheres.

To understand the phenomenon more in general, recall that the standard metric of S^{n} is a saddle point of the Einstein-Hilbert functional

$$
g \quad \longrightarrow \quad \int_{S^{n}} R_{g} d V_{g}
$$

It is a minimum in the conformal class and a maximum outside of it.
In the (3D) CR case one has positive second variations also for special non-embeddable directions ([Bland, '94]).

Comments

We have seen that the CR Sobolev quotient of S_{s}^{3}, a closed manifold, behaves like that of a domain in \mathbb{R}^{n}. This fact seems to be tightly related to the non-embeddability of Rossi spheres.

To understand the phenomenon more in general, recall that the standard metric of S^{n} is a saddle point of the Einstein-Hilbert functional

$$
g \quad \longrightarrow \quad \int_{S^{n}} R_{g} d V_{g}
$$

It is a minimum in the conformal class and a maximum outside of it.
In the (3D) CR case one has positive second variations also for special non-embeddable directions ([Bland, '94]). It would be interesting to observe this change of sign also the mass and the Sobolev quotient.

Some open problems

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]).

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open.

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified.

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88].

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. Howeverwe may not have this assumption, and moving planes do not work.

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. Howeverwe may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$
-\Delta_{b} u=u^{p} \quad \text { in } \mathbb{H}^{n} ; \quad p<\frac{Q+2}{Q-2}
$$

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. Howeverwe may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$
-\Delta_{b} u=u^{p} \quad \text { in } \mathbb{H}^{n} ; \quad p<\frac{Q+2}{Q-2}
$$

In \mathbb{R}^{n} it was shown in [Gidas-Spruck, '81] that $u \equiv 0$.

Some open problems

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$
-\Delta_{b} u=u^{\frac{Q+2}{Q-2}} \quad \text { in } \mathbb{H}^{n} ; \quad Q=2 n+2
$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. Howeverwe may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$
-\Delta_{b} u=u^{p} \quad \text { in } \mathbb{H}^{n} ; \quad p<\frac{Q+2}{Q-2}
$$

In \mathbb{R}^{n} it was shown in [Gidas-Spruck, '81] that $u \equiv 0$. In \mathbb{H}^{n}, there are partial results in [Birindelli-Capuzzo Dolcetta-Cutrì, 97], for $p<\frac{Q}{Q_{\underline{-2}}^{2}}$.

A similar problem holds for singular solutions on $\mathbb{H}^{n} \backslash\{0\}$.

A similar problem holds for singular solutions on $\mathbb{H}^{n} \backslash\{0\}$. In $\mathbb{R}^{n} \backslash\{0\}$ such solutions were classified in [Caffarelli-Gidas-Spruck, '89] and were shown to be radial.

A similar problem holds for singular solutions on $\mathbb{H}^{n} \backslash\{0\}$. In $\mathbb{R}^{n} \backslash\{0\}$ such solutions were classified in [Caffarelli-Gidas-Spruck, '89] and were shown to be radial.

For the Heisenberg group there is a recent construction in [Afeltra, '19], where solutions similar to Delaunay's unduloids were produced.

Thanks for your attention

