On the Sobolev quotient in sub-Riemannian geometry Joint work with J.H.Cheng and P.Yang

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 1 / 25

San

The Yamabe problem

Andrea Malchiodi (SNS)

シック・ ボー・ ボー・ オー・ オー・

Pisa, Feb. 10, 2020 2/25

On compact Riemannian manifolds of dimension $n \ge 3$, Yamabe in 1960 posed the problem of finding conformal metrics with constant scalar curvature.

200

(日) (四) (王) (王) (王)

On compact Riemannian manifolds of dimension $n \ge 3$, Yamabe in 1960 posed the problem of finding conformal metrics with constant scalar curvature.

This is a conformal generalization of the Uniformization problem, and Yamabe intended to use it as a step to solve Poincaré's conjecture.

Sac

イロト イポト イヨト イヨト 二日

On compact Riemannian manifolds of dimension $n \ge 3$, Yamabe in 1960 posed the problem of finding conformal metrics with constant scalar curvature.

This is a conformal generalization of the Uniformization problem, and Yamabe intended to use it as a step to solve Poincaré's conjecture.

If R_g is the scalar curvature, setting $\tilde{g}(x) = \lambda(x)g(x) = u(x)^{\frac{4}{n-2}}g(x)$, u(x) one has to find on M a positive solution of

イロト イヨト イヨト イヨト 一日 - のへの

2/25

Pisa, Feb. 10, 2020

$$(Y) -c_n\Delta u + R_g u = \overline{R} u^{\frac{n+2}{n-2}}; c_n = 4\frac{n-1}{n-2}, \quad \overline{R} \in \mathbb{R}.$$

Andrea Malchiodi (SNS)

Andrea Malchiodi (SNS)

Recall the equation

$$(Y) -c_n\Delta u + R_g u = \overline{R} u^{\frac{n+2}{n-2}}; c_n = 4\frac{n-1}{n-2}, \quad \overline{R} \in \mathbb{R}.$$

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 3 / 25

900

Recall the equation

$$(Y) -c_n\Delta u + R_g u = \overline{R} u^{\frac{n+2}{n-2}}; c_n = 4\frac{n-1}{n-2}, \quad \overline{R} \in \mathbb{R}.$$

Considering \overline{R} as a Lagrange multiplier, one can try to find solutions by minimizing the *Sobolev-Yamabe quotient*

$$Q_{SY}(u) = \frac{\int_M \left(c_n |\nabla u|^2 + R_g u^2 \right) dV}{\left(\int_M |u|^{2^*} dV \right)^{\frac{2}{2^*}}}; \qquad 2^* = \frac{2n}{n-2}.$$

Pisa, Feb. 10, 2020

Sar

3/25

Andrea Malchiodi (SNS)

Recall the equation

$$(Y) -c_n\Delta u + R_g u = \overline{R} u^{\frac{n+2}{n-2}}; c_n = 4\frac{n-1}{n-2}, \quad \overline{R} \in \mathbb{R}.$$

Considering \overline{R} as a Lagrange multiplier, one can try to find solutions by minimizing the *Sobolev-Yamabe quotient*

$$Q_{SY}(u) = \frac{\int_M \left(c_n |\nabla u|^2 + R_g u^2 \right) dV}{\left(\int_M |u|^{2^*} dV \right)^{\frac{2}{2^*}}}; \qquad 2^* = \frac{2n}{n-2}.$$

The Sobolev-Yamabe constant is defined as

$$Y(M,[g]) = \inf_{u \neq 0} Q_{SY}(u).$$

イロト イボト イヨト イヨト

Pisa, Feb. 10, 2020

-

Sac

3/25

Andrea Malchiodi (SNS)

Recall the equation

$$(Y) -c_n\Delta u + R_g u = \overline{R} u^{\frac{n+2}{n-2}}; c_n = 4\frac{n-1}{n-2}, \quad \overline{R} \in \mathbb{R}.$$

Considering \overline{R} as a Lagrange multiplier, one can try to find solutions by minimizing the *Sobolev-Yamabe quotient*

$$Q_{SY}(u) = \frac{\int_M \left(c_n |\nabla u|^2 + R_g u^2 \right) dV}{\left(\int_M |u|^{2^*} dV \right)^{\frac{2}{2^*}}}; \qquad 2^* = \frac{2n}{n-2}.$$

The Sobolev-Yamabe constant is defined as

$$Y(M,[g]) = \inf_{u \neq 0} Q_{SY}(u).$$

The number Y(M, [g]) depends only on the conformal class [g] of g.

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 3/25

イロト イヨト イヨト イヨト 一日 - のへの

Recall the equation

$$(Y) -c_n\Delta u + R_g u = \overline{R} u^{\frac{n+2}{n-2}}; c_n = 4\frac{n-1}{n-2}, \quad \overline{R} \in \mathbb{R}.$$

Considering \overline{R} as a Lagrange multiplier, one can try to find solutions by minimizing the *Sobolev-Yamabe quotient*

$$Q_{SY}(u) = \frac{\int_M \left(c_n |\nabla u|^2 + R_g u^2 \right) dV}{\left(\int_M |u|^{2^*} dV \right)^{\frac{2}{2^*}}}; \qquad 2^* = \frac{2n}{n-2}.$$

The Sobolev-Yamabe constant is defined as

$$Y(M,[g]) = \inf_{u \neq 0} Q_{SY}(u).$$

The number Y(M, [g]) depends only on the conformal class [g] of g.

(M, [g]) is said to be of *negative*, zero or positive Yamabe class when Y(M, [g]) is negative, zero or positive.

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 3 / 25

The Sobolev quotient in \mathbb{R}^n $(n \geq 3)$

Andrea Malchiodi (SNS)

The Sobolev quotient in \mathbb{R}^n $(n \ge 3)$

In \mathbb{R}^n one has the Sobolev-Gagliardo-Nirenberg inequality

$$||u||_{L^{2^*}(\mathbb{R}^n)}^2 \le B_n \int_{\mathbb{R}^n} |\nabla u|^2 dx; \qquad u \in C_c^{\infty}(\mathbb{R}^n).$$

<ロト <回ト < 三ト < 三ト

1

The Sobolev quotient in \mathbb{R}^n $(n \ge 3)$

In \mathbb{R}^n one has the Sobolev-Gagliardo-Nirenberg inequality

$$||u||_{L^{2^*}(\mathbb{R}^n)}^2 \le B_n \int_{\mathbb{R}^n} |\nabla u|^2 dx; \qquad u \in C_c^{\infty}(\mathbb{R}^n).$$

As for Y(M, [g]), define the Sobolev quotient $S_n = \inf_u \frac{\int_{\mathbb{R}^n} c_n |\nabla u|^2 dx}{\|u\|_{L^{2^*}(\mathbb{R}^n)}^2}$.

In \mathbb{R}^n one has the Sobolev-Gagliardo-Nirenberg inequality

$$||u||_{L^{2^*}(\mathbb{R}^n)}^2 \le B_n \int_{\mathbb{R}^n} |\nabla u|^2 dx; \qquad u \in C_c^{\infty}(\mathbb{R}^n).$$

As for Y(M, [g]), define the Sobolev quotient $S_n = \inf_u \frac{\int_{\mathbb{R}^n} c_n |\nabla u|^2 dx}{\|u\|_{L^{2^*}(\mathbb{R}^n)}^2}$.

([Aubin, '76], [Talenti, '76]) Completing $C_c^{\infty}(\mathbb{R}^n)$, S_n is attained by

$$U_{p,\lambda}(x) := \frac{\lambda^{\frac{n-2}{2}}}{(1+\lambda^2|x-p|^2)^{\frac{n-2}{2}}}; \qquad p \in \mathbb{R}^n, \lambda > 0.$$

4/25

Pisa, Feb. 10, 2020

Andrea Malchiodi (SNS)

In \mathbb{R}^n one has the Sobolev-Gagliardo-Nirenberg inequality

$$||u||_{L^{2^*}(\mathbb{R}^n)}^2 \le B_n \int_{\mathbb{R}^n} |\nabla u|^2 dx; \qquad u \in C_c^{\infty}(\mathbb{R}^n).$$

As for Y(M, [g]), define the Sobolev quotient $S_n = \inf_u \frac{\int_{\mathbb{R}^n} c_n |\nabla u|^2 dx}{\|u\|_{L^{2^*}(\mathbb{R}^n)}^2}$.

([Aubin, '76], [Talenti, '76]) Completing $C_c^{\infty}(\mathbb{R}^n)$, S_n is attained by

$$U_{p,\lambda}(x) := \frac{\lambda^{\frac{n-2}{2}}}{(1+\lambda^2|x-p|^2)^{\frac{n-2}{2}}}; \qquad p \in \mathbb{R}^n, \lambda > 0.$$

• Since S^n is conformal to \mathbb{R}^n , one has that $Y(S^n, [g_{S^n}]) = S_n$.

イロト イヨト イヨト イヨト 一日 - のへの

Andrea Malchiodi (SNS)

ふくらい 川 ふかく川々 (四マネーマ

Pisa, Feb. 10, 2020 5 / 25

Also for a (say, bounded smooth) domain $\Omega \subseteq \mathbb{R}^n$ one can consider the Sobolev quotient for functions supported in Ω

$$\inf_{u \in C_c^{\infty}(\Omega)} \frac{\int_{\mathbb{R}^n} c_n |\nabla u|^2 dx}{\|u\|_{L^{2^*}(\mathbb{R}^n)}^2}.$$

200

(日) (四) (王) (王) (王)

Also for a (say, bounded smooth) domain $\Omega \subseteq \mathbb{R}^n$ one can consider the Sobolev quotient for functions supported in Ω

$$\inf_{u \in C_c^{\infty}(\Omega)} \frac{\int_{\mathbb{R}^n} c_n |\nabla u|^2 dx}{\|u\|_{L^{2^*}(\mathbb{R}^n)}^2}$$

In this case the infimum coincides with S_n , but it is never attained because of the lack of compactness of the embedding.

イロト イヨト イヨト イヨト 一日 - のへの

Also for a (say, bounded smooth) domain $\Omega \subseteq \mathbb{R}^n$ one can consider the Sobolev quotient for functions supported in Ω

$$\inf_{u \in C_c^{\infty}(\Omega)} \frac{\int_{\mathbb{R}^n} c_n |\nabla u|^2 dx}{\|u\|_{L^{2^*}(\mathbb{R}^n)}^2}$$

In this case the infimum coincides with S_n , but it is never attained because of the lack of compactness of the embedding.

Minimizing sequences u_n tend to concentrate indefinitely inside Ω .

Brief history on the Yamabe problem

Andrea Malchiodi (SNS)

200

(日) (四) (코) (코) (코) (코)

- In 1968 Trudinger proved that (Y) is solvable provided $Y(M, [g]) \leq \varepsilon_n$ for some $\varepsilon_n > 0$.

- In 1968 Trudinger proved that (Y) is solvable provided $Y(M, [g]) \leq \varepsilon_n$ for some $\varepsilon_n > 0$. In particular for negative and zero Yamabe class.

- In 1968 Trudinger proved that (Y) is solvable provided $Y(M, [g]) \leq \varepsilon_n$ for some $\varepsilon_n > 0$. In particular for negative and zero Yamabe class.

- In 1976 Aubin proved that (Y) is solvable provided $Y(M, [g]) < S_n$.

- In 1968 Trudinger proved that (Y) is solvable provided $Y(M, [g]) \leq \varepsilon_n$ for some $\varepsilon_n > 0$. In particular for negative and zero Yamabe class.

- In 1976 Aubin proved that (Y) is solvable provided $Y(M, [g]) < S_n$. He also verified this inequality when $n \ge 6$ and (M, g) is not locally conformally flat, unless $(M, g) \simeq (S^n, g_{S^n})$.

イロト イヨト イヨト イヨト 一日 - のへの

- In 1968 Trudinger proved that (Y) is solvable provided $Y(M, [g]) \leq \varepsilon_n$ for some $\varepsilon_n > 0$. In particular for negative and zero Yamabe class.

- In 1976 Aubin proved that (Y) is solvable provided $Y(M, [g]) < S_n$. He also verified this inequality when $n \ge 6$ and (M, g) is not locally conformally flat, unless $(M, g) \simeq (S^n, g_{S^n})$.

- In 1984 Schoen proved that $Y(M, [g]) < S_n$ in all other cases, i.e. $n \leq 5$ or (M, g) locally conformally flat, unless $(M, g) \simeq (S^n, g_{S^n})$.

イロト イヨト イヨト イヨト 一日 - のへの

Andrea Malchiodi (SNS)

The inequality is proved using Aubin-Talenti's functions.

イロト イヨト イヨト イヨト 三日 - のへで

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}} g$ with λ large.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ● ● ●

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}}g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ● ● ●

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}}g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ��や

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}}g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ��や

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}}g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ��や

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}}g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of *global nature*. Heuristics:

・ロト ・回ト ・ヨト ・ヨト ・ 日・ つへつ

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}}g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p,\lambda}$ then

$$L_g u := -c_n \Delta u + R_g u \simeq U_{p,\lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_p.$$

Andrea Malchiodi (SNS)

イロト イヨト イヨト イヨト 一日 - のへの
On the inequality $Y(M, [g]) < S_n$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p,\lambda}$ then

$$L_g u := -c_n \Delta u + R_g u \simeq U_{p,\lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_p.$$

At large scales an approximate solution looks like the Green's function G_p of the operator L_g .

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 7 / 25

On the inequality $Y(M, [g]) < S_n$

The inequality is proved using Aubin-Talenti's functions. Given $p \in M$, consider a conformal metric $\tilde{g} \simeq U_{p,\lambda}^{\frac{4}{n-2}} g$ with λ large. Since locally $(M,g) \simeq \mathbb{R}^n$ and since $U_{p,\lambda}$ is highly concentrated, $Q_{SY}(U_{p,\lambda}) \simeq S_n$, with small correction terms due to the geometry of M.

Since $U_{p,\lambda}$ decays like $\frac{1}{|x|^{n-2}}$ at infinity, it is more *localized* in large dimension. Aubin proved that for $n \geq 6$ the corrections are given by $-\frac{|W_g|^2(p)}{\lambda^4}$, a local quantity depending on the Weyl tensor.

For $n \leq 5$ the correction is of global nature. Heuristics: if $u \simeq U_{p,\lambda}$ then

$$L_g u := -c_n \Delta u + R_g u \simeq U_{p,\lambda}^{\frac{n+2}{n-2}} \simeq \frac{1}{\lambda} \delta_p.$$

At large scales an approximate solution looks like the Green's function G_p of the operator L_g . If $G_p \simeq \frac{1}{|x|^{n-2}} + A$ at p, the correction is $-A/\lambda^{n-2}$.

A brief excursion in general relativity

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 8 / 25

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.

1

200

イロト イロト イヨト イヨト

A brief excursion in general relativity

To understand the value of A, general relativity comes into play.

A manifold (N^3, \tilde{g}) is asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \setminus K$ (called *end*) is diffeomorphic to $\mathbb{R}^3 \setminus B_1(0)$.

イロト イヨト イヨト イヨト 一日 - のへの

To understand the value of A, general relativity comes into play.

A manifold (N^3, \tilde{g}) is asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \setminus K$ (called *end*) is diffeomorphic to $\mathbb{R}^3 \setminus B_1(0)$. It is required that the metric satisfies

・ロト ・回ト ・ヨト ・ヨト ・ 日・ つへつ

To understand the value of A, general relativity comes into play.

A manifold (N^3, \tilde{g}) is asymptotically flat if it is a union of a compact set K (possibly with topology), and such that $N \setminus K$ (called *end*) is diffeomorphic to $\mathbb{R}^3 \setminus B_1(0)$. It is required that the metric satisfies

Such manifolds describe *initial data sets* for isolated gravitational systems, and a similar definition holds for multiple *ends*.

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 8 / 25

Andrea Malchiodi (SNS)

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 2 ○ 0 0 Pisa, Feb. 10, 2020 9 / 25

Example 1: Schwartzschild metric (two ends).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m.

500

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m. In polar coordinates (r, ξ) the expression is

$$\tilde{g}_{Schw} = \left(1 + \frac{m}{2r}\right)^4 \left(dr^2 + r^2 d\xi^2\right).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m. In polar coordinates (r, ξ) the expression is

$$\tilde{g}_{Schw} = \left(1 + \frac{m}{2r}\right)^4 \left(dr^2 + r^2 d\xi^2\right).$$

At $r = \frac{m}{2}$ there is a minimal surface, representing the *event horizon*.

イロト イヨト イヨト イヨト 一日 - のへの

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m. In polar coordinates (r, ξ) the expression is

$$\tilde{g}_{Schw} = \left(1 + \frac{m}{2r}\right)^4 \left(dr^2 + r^2 d\xi^2\right).$$

At $r = \frac{m}{2}$ there is a minimal surface, representing the *event horizon*.

Example 2: Conformal blow-ups.

イロト イヨト イヨト イヨト 一日 - のへの

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m. In polar coordinates (r, ξ) the expression is

$$\tilde{g}_{Schw} = \left(1 + \frac{m}{2r}\right)^4 \left(dr^2 + r^2 d\xi^2\right).$$

At $r = \frac{m}{2}$ there is a minimal surface, representing the *event horizon*.

Example 2: Conformal blow-ups. Given a compact Riemannian three-manifold (M, g) and $p \in M$, one can consider a conformal metric on \tilde{g} on $M \setminus \{p\}$ of the following form

$$\tilde{g} = f(x) g;$$
 $f(x) \simeq \frac{1}{d(x,p)^4}.$

イロト イヨト イヨト イヨト 一日 - のへの

9/25

Pisa, Feb. 10, 2020

Andrea Malchiodi (SNS)

Example 1: Schwartzschild metric (two ends). It describes a static black hole of total mass m. In polar coordinates (r, ξ) the expression is

$$\tilde{g}_{Schw} = \left(1 + \frac{m}{2r}\right)^4 \left(dr^2 + r^2 d\xi^2\right).$$

At $r = \frac{m}{2}$ there is a minimal surface, representing the *event horizon*.

Example 2: Conformal blow-ups. Given a compact Riemannian three-manifold (M, g) and $p \in M$, one can consider a conformal metric on \tilde{g} on $M \setminus \{p\}$ of the following form

$$\tilde{g} = f(x) g;$$
 $f(x) \simeq \frac{1}{d(x,p)^4}.$

Then, in normal coordinates x at p, setting $y = \frac{x}{|x|^2}$ (Kelvin inversion) one has an asymptotically flat manifold in y-coordinates

$$ilde{g}(x)\simeq rac{dx^2}{|x|^4}\simeq dy^2, \qquad (y ext{ large}).$$

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 9 / 25

Andrea Malchiodi (SNS)

It governs the structure of space-time according to general relativity

200

It governs the structure of space-time according to general relativity

(Einstein tensor)
$$E_{ij} := R_{ij} - \frac{1}{2}R_g g_{ij} = 0.$$

200

It governs the structure of space-time according to general relativity

(Einstein tensor)
$$E_{ij} := R_{ij} - \frac{1}{2}R_g g_{ij} = 0.$$

Here R_{ij} is the Ricci tensor, and R_g the scalar curvature.

200

(日) (四) (王) (王) (王)

It governs the structure of space-time according to general relativity

(Einstein tensor)
$$E_{ij} := R_{ij} - \frac{1}{2}R_g g_{ij} = 0.$$

Here R_{ij} is the Ricci tensor, and R_g the scalar curvature.

This equation is variational, with Euler-Lagrange functional given by

$$\mathcal{A}(g) := \int_M R_g \, dV_g$$
 Einstein-Hilbert functional.

200

It governs the structure of space-time according to general relativity

(Einstein tensor)
$$E_{ij} := R_{ij} - \frac{1}{2}R_g g_{ij} = 0.$$

Here R_{ij} is the Ricci tensor, and R_g the scalar curvature. This equation is variational, with Euler-Lagrange functional given by

$$\mathcal{A}(g) := \int_M R_g \, dV_g$$
 Einstein-Hilbert functional.

In fact, one has

$$\frac{d}{dg} \left(R_g \, dV_g \right) [h] = -\left(h^{ij} E_{ij} + \operatorname{div} \, X \right) dV_g,$$

イロト イポト イヨト イヨト

Pisa, Feb. 10, 2020

San

10/25

where X is some vector field.

Andrea Malchiodi (SNS)

Andrea Malchiodi (SNS)

If we consider variations that preserve asymptotic flatness, then the divergence term has a role

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity)

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$\frac{d}{dg}(\mathcal{A}(g) + m(g))[h] = \int_M h^{ij} E_{ij} \, dV.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$\frac{d}{dg}(\mathcal{A}(g) + m(g))[h] = \int_M h^{ij} E_{ij} \, dV.$$

The quantity m(g), called *ADM* mass ([ADM, '60]), is defined as

$$m(g) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k g_{jk} - \partial_j g_{kk} \right) \nu^j d\sigma.$$

イロト イヨト イヨト イヨト 一日 - のへの

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$\frac{d}{dg}(\mathcal{A}(g) + m(g))[h] = \int_M h^{ij} E_{ij} \, dV.$$

The quantity m(g), called ADM mass ([ADM, '60]), is defined as

$$m(g) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k g_{jk} - \partial_j g_{kk} \right) \nu^j d\sigma.$$

イロト イヨト イヨト イヨト 一日 - のへの

11/25

Pisa, Feb. 10, 2020

Example 1: Schwartzschild. m_{ADM} = black-hole mass.

Andrea Malchiodi (SNS)

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$\frac{d}{dg}(\mathcal{A}(g) + m(g))[h] = \int_M h^{ij} E_{ij} \, dV.$$

The quantity m(g), called ADM mass ([ADM, '60]), is defined as

$$m(g) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k g_{jk} - \partial_j g_{kk} \right) \nu^j d\sigma.$$

Example 1: Schwartzschild. m_{ADM} = black-hole mass.

Example 2: Conformal blow-ups. If G_p is the Green's function of an elliptic operator on \hat{M} with pole at p, then $G_p(x) \simeq d(x, p)^{-1}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Pisa, Feb. 10, 2020

11/25

If we consider variations that preserve asymptotic flatness, then the divergence term has a role (flux at infinity), and

$$\frac{d}{dg}(\mathcal{A}(g) + m(g))[h] = \int_M h^{ij} E_{ij} \, dV.$$

The quantity m(g), called ADM mass ([ADM, '60]), is defined as

$$m(g) := \lim_{r \to \infty} \oint_{S_r} \left(\partial_k g_{jk} - \partial_j g_{kk} \right) \nu^j d\sigma.$$

Example 1: Schwartzschild. m_{ADM} = black-hole mass.

Example 2: Conformal blow-ups. If G_p is the Green's function of an elliptic operator on \hat{M} with pole at p, then $G_p(x) \simeq d(x,p)^{-1}$. If $f(x) = G_p^4 \simeq d(x,p)^{-4}$ and $\tilde{g}(x) = f(x)g(x)$, then

$$m_{ADM} = \lim_{x \to p} \left(G_p(x) - \frac{1}{d(x,p)} \right) = A.$$

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 11/25

The Positive Mass Theorem

Andrea Malchiodi (SNS)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ かへで
Pisa, Feb. 10, 2020 12 / 25

The Positive Mass Theorem

Theorem ([Schoen-Yau, '79 ('81, '17)])

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 12 / 25

990

Theorem ([Schoen-Yau, '79 ('81, '17)]) If $R_g \ge 0$ then $m(g) \ge 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If $R_g \ge 0$ then $m(g) \ge 0$. In case m(g) = 0, then (M, g) is <u>isometric</u> to the flat Euclidean space (\mathbb{R}^3, dx^2) .

200

<ロト < 同ト < 臣ト < 臣ト 三 臣・

If $R_g \ge 0$ then $m(g) \ge 0$. In case m(g) = 0, then (M, g) is <u>isometric</u> to the flat Euclidean space (\mathbb{R}^3, dx^2) .

Physically, this means that a positive <u>local</u> energy density implies a positive global energy for the system.

If $R_g \ge 0$ then $m(g) \ge 0$. In case m(g) = 0, then (M, g) is <u>isometric</u> to the flat Euclidean space (\mathbb{R}^3, dx^2) .

Physically, this means that a positive <u>local</u> energy density implies a positive global energy for the system. (But one cannot just integrate!)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ● ● ●

If $R_g \ge 0$ then $m(g) \ge 0$. In case m(g) = 0, then (M, g) is <u>isometric</u> to the flat Euclidean space (\mathbb{R}^3, dx^2) .

Physically, this means that a positive <u>local</u> energy density implies a positive global energy for the system. (But one cannot just integrate!)

The proof used the construction of <u>stable</u> asymptotically planar minimal surfaces assuming m < 0, obtaining then a contradiction from the second variation formula using $R_g \ge 0$.

イロト イヨト イヨト イヨト 一日 - のへの

12/25

Pisa, Feb. 10, 2020
Andrea Malchiodi (SNS)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ かへで
Pisa, Feb. 10, 2020 13 / 25

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ .

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ .

We also have a <u>CR structure</u> (complex rotation) $J: \xi \to \xi$ s.t. $J^2 = -1$.

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ .

We also have a <u>CR structure</u> (complex rotation) $J: \xi \to \xi$ s.t. $J^2 = -1$. Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ .

We also have a <u>CR structure</u> (complex rotation) $J: \xi \to \xi$ s.t. $J^2 = -1$. Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

A contact form θ is a 1-form annihilating ξ

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ .

We also have a <u>CR structure</u> (complex rotation) $J: \xi \to \xi$ s.t. $J^2 = -1$. Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

A <u>contact form</u> θ is a 1-form annihilating ξ : we assume that $\theta \wedge d\theta \neq 0$ everywhere on M (pseudoconvexity).

We deal with three-dimensional manifolds with a non-integrable twodimensional distribution (contact structure) ξ .

We also have a <u>CR structure</u> (complex rotation) $J: \xi \to \xi$ s.t. $J^2 = -1$. Given J as above, we have locally a vector field Z_1 such that

$$JZ_1 = iZ_1;$$
 $JZ_{\overline{1}} = -iZ_{\overline{1}}$ where $Z_{\overline{1}} = \overline{(Z_1)}.$

A <u>contact form</u> θ is a 1-form annihilating ξ : we assume that $\theta \wedge d\theta \neq 0$ everywhere on M (pseudoconvexity).

This condition is quite important for the study of biholomorphic mappings and the $\overline{\partial}$ -Neumann problem ([Beals-Fefferman-Grossman, '83]).

イロト イヨト イヨト イヨト 一日 - のへの

Andrea Malchiodi (SNS)

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 2 ○ 0 0 Pisa, Feb. 10, 2020 14 / 25 The *Heisenberg group* (flat model) $\mathbb{H}^1 = \{(z, t) \in \mathbb{C} \times \mathbb{R}\}.$

The *Heisenberg group* (flat model) $\mathbb{H}^1 = \{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$\overset{\circ}{Z}_1 = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i \overline{z} \frac{\partial}{\partial t} \right); \qquad \qquad \overset{\circ}{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - i z \frac{\partial}{\partial t} \right),$$

 ξ_0 is spanned by real and imaginary parts of \check{Z}_1 .

The *Heisenberg group* (flat model) $\mathbb{H}^1 = \{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$\overset{\circ}{Z}_{1} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i \overline{z} \frac{\partial}{\partial t} \right); \qquad \qquad \overset{\circ}{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - i z \frac{\partial}{\partial t} \right),$$

 ξ_0 is spanned by real and imaginary parts of \mathring{Z}_1 . The standard CR structure $J_0: \xi_0 \to \xi_0$ verifies $J_0 \stackrel{\circ}{Z}_1 = i \stackrel{\circ}{Z}_1$.

NO C

<ロト < 同ト < 臣ト < 臣ト 三 臣・

The *Heisenberg group* (flat model) $\mathbb{H}^1 = \{(z,t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$\overset{\circ}{Z}_{1} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i\overline{z} \frac{\partial}{\partial t} \right); \qquad \qquad \overset{\circ}{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - iz \frac{\partial}{\partial t} \right),$$

 ξ_0 is spanned by real and imaginary parts of $\overset{\circ}{Z}_1$. The standard CR structure $J_0: \xi_0 \to \xi_0$ verifies $J_0 \overset{\circ}{Z}_1 = i \overset{\circ}{Z}_1$. $\overset{\circ}{\theta} = dt + izd\overline{z} - i\overline{z}dz$.

The *Heisenberg group* (flat model) $\mathbb{H}^1 = \{(z,t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$\overset{\circ}{Z}_{1} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i\overline{z} \frac{\partial}{\partial t} \right); \qquad \qquad \overset{\circ}{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - iz \frac{\partial}{\partial t} \right),$$

 ξ_0 is spanned by real and imaginary parts of $\overset{\circ}{Z}_1$. The standard CR structure $J_0: \xi_0 \to \xi_0$ verifies $J_0 \overset{\circ}{Z}_1 = i \overset{\circ}{Z}_1$. $\overset{\circ}{\theta} = dt + izd\overline{z} - i\overline{z}dz$.

Boundaries of complex domains.

The *Heisenberg group* (flat model) $\mathbb{H}^1 = \{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$\overset{\circ}{Z}_{1} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i\overline{z} \frac{\partial}{\partial t} \right); \qquad \overset{\circ}{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - iz \frac{\partial}{\partial t} \right),$$

 ξ_0 is spanned by real and imaginary parts of \mathring{Z}_1 . The standard CR structure $J_0: \xi_0 \to \xi_0$ verifies $J_0 \stackrel{\circ}{Z}_1 = i \stackrel{\circ}{Z}_1$. $\stackrel{\circ}{\theta} = dt + izd\overline{z} - i\overline{z}dz$.

Boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^2$ and J_2 the standard complex rotation in \mathbb{C}^2 .

イロト イヨト イヨト イヨト ニヨー つくで

14/25

Pisa, Feb. 10, 2020

The *Heisenberg group* (flat model) $\mathbb{H}^1 = \{(z,t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$\overset{\circ}{Z}_{1} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i\overline{z} \frac{\partial}{\partial t} \right); \qquad \overset{\circ}{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - iz \frac{\partial}{\partial t} \right),$$

 ξ_0 is spanned by real and imaginary parts of \mathring{Z}_1 . The standard CR structure $J_0: \xi_0 \to \xi_0$ verifies $J_0 \stackrel{\circ}{Z}_1 = i \stackrel{\circ}{Z}_1$. $\stackrel{\circ}{\theta} = dt + izd\overline{z} - i\overline{z}dz$.

Boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^2$ and J_2 the standard complex rotation in \mathbb{C}^2 . Given $p \in \partial \Omega$ one can consider the subset ξ_p of $T_p \partial \Omega$ which is invariant by J_2 .

イロト イヨト イヨト イヨト 一日 - のへの

14/25

Pisa, Feb. 10, 2020

The *Heisenberg group* (flat model) $\mathbb{H}^1 = \{(z, t) \in \mathbb{C} \times \mathbb{R}\}$. Setting

$$\overset{\circ}{Z}_{1} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + i\overline{z} \frac{\partial}{\partial t} \right); \qquad \overset{\circ}{Z}_{\overline{1}} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial \overline{z}} - iz \frac{\partial}{\partial t} \right),$$

 ξ_0 is spanned by real and imaginary parts of \mathring{Z}_1 . The standard CR structure $J_0: \xi_0 \to \xi_0$ verifies $J_0 \stackrel{\circ}{Z}_1 = i \stackrel{\circ}{Z}_1$. $\stackrel{\circ}{\theta} = dt + izd\overline{z} - i\overline{z}dz$.

Boundaries of complex domains. Consider $\Omega \subset \mathbb{C}^2$ and J_2 the standard complex rotation in \mathbb{C}^2 . Given $p \in \partial \Omega$ one can consider the subset ξ_p of $T_p \partial \Omega$ which is invariant by J_2 . We take ξ_p as contact distribution, and $J|_{\xi_p}$ as the CR structure J.

イロト イヨト イヨト イヨト 一日 - のへの

Andrea Malchiodi (SNS)

ふくらい 川 ふかく山々 (四マネーマ

Pisa, Feb. 10, 2020 15/25

In 1983 Webster introduced *scalar curvature* W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

200

In 1983 Webster introduced *scalar curvature* W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < つへの

In 1983 Webster introduced *scalar curvature* W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

Here Δ_b is the sub-laplacian on M: roughly, the laplacian in the contact directions

San

イロト イポト イヨト イヨト 二日

In 1983 Webster introduced *scalar curvature* W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

Here Δ_b is the *sub-laplacian* on M: roughly, the *laplacian in the contact* directions (use Hörmander's theory (commutators) to recover regularity).

200

イロト イボト イヨト イヨト 三日

In 1983 Webster introduced *scalar curvature* W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

Here Δ_b is the *sub-laplacian* on M: roughly, the *laplacian in the contact* directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a *Sobolev-Webster quotient*, a *Webster class*, and try to uniformize W as we did for the scalar curvature.

200

In 1983 Webster introduced *scalar curvature* W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

Here Δ_b is the *sub-laplacian* on M: roughly, the *laplacian in the contact* directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and try to uniformize W as we did for the scalar curvature. In real dimension $n \geq 5$ Jerison and Lee (1989) proved the counterparts of Trudinger and Aubin's results.

イロト イヨト イヨト イヨト 一日 - のへの

In 1983 Webster introduced *scalar curvature* W, to study the biholomorphy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if $\hat{\theta} = u^2 \theta$, then $W_{\hat{\theta}}$ is given by

$$-4\Delta_b u + W_\theta u = W_{\hat{\theta}} u^3.$$

Here Δ_b is the *sub-laplacian* on M: roughly, the *laplacian in the contact* directions (use Hörmander's theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and try to uniformize W as we did for the scalar curvature. In real dimension $n \ge 5$ Jerison and Lee (1989) proved the counterparts of Trudinger and Aubin's results. In real dimension n = 3 non-minimal solutions were found in [Gamara (et al.), '01].

イロト イヨト イヨト イヨト 一日 - のへの

Andrea Malchiodi (SNS)

・ロマ・山マ・山マ・山マ・山マ

Pisa, Feb. 10, 2020 16 / 25

In 3D the Green's function still appears.

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq 1/\rho^2 + A_s$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance.

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq 1/\rho^2 + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq 1/\rho^2 + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]).

イロト 不同 トイヨト イヨト ニヨー つくで

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq 1/\rho^2 + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P = \Delta_b^2 + l.o.t$. which plays a role here.

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < つへの

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq 1/\rho^2 + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P = \Delta_b^2 + l.o.t$. which plays a role here.

イロト イヨト イヨト イヨト 一日 - のへの

16/25

Pisa, Feb. 10, 2020

Theorem ([Chanillo-Chiu-Yang, '12])

Andrea Malchiodi (SNS)

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq 1/\rho^2 + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P = \Delta_b^2 + l.o.t$. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^3 be a compact CR manifold.

イロト イヨト イヨト イヨト 一日 - のへの

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq 1/\rho^2 + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P = \Delta_b^2 + l.o.t$. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^3 be a compact CR manifold. If $P \ge 0$ and W > 0, then M embeds into some \mathbb{C}^N .

イロト イヨト イヨト イヨト 一日 - のへの

In 3D the Green's function still appears. In suitable coordinates at $p \in M$

$$G_p \simeq 1/\rho^2 + A,$$

where $\rho^4(z,t) = |z|^4 + t^2$, $(z,t) \in \mathbb{H}^1$ is the homogeneous distance. Blowing-up the contact form θ using G_p , we obtain an asymptotically (Heisenberg) flat manifold and define its <u>mass</u>, proportional to A.

However, one crucial difference between dimension three and higher is the *embeddability* of abstract CR manifolds ([Chen-Shaw, '01]). There is a fourth-order (Paneitz) operator $P = \Delta_b^2 + l.o.t$. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, '12]) Let M^3 be a compact CR manifold. If $P \ge 0$ and W > 0, then M embeds into some \mathbb{C}^N .

More relations between P and embeddability properties of CR manifolds in [Chanillo-Case-Yang, '16], [Takeuchi, '19].

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 16 / 25

A positive mass theorem in CR geometry

Andrea Malchiodi (SNS)

A positive mass theorem in CR geometry

Theorem 1 ([Cheng-M.-Yang, '17])
Theorem 1 ([Cheng-M.-Yang, '17]) Let (M^3, J, θ) be a compact CR manifold.

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative.

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p.

ヘロト (四) (三) (三) (三) (日)

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then

(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

・ロト ・回ト ・ヨト ・ヨト ・ 日・ つへつ

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then

(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

(b) if m = 0, (M, J, θ) is conformally equivalent to a standard $S^3 (\simeq \mathbb{H}^1)$.

・ロト ・ 同 ト ・ 王 ト ・ 王 ・ クタマ

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then

(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

(b) if m = 0, (M, J, θ) is conformally equivalent to a standard $S^3 (\simeq \mathbb{H}^1)$.

• The proof uses a tricky integration by parts

・ロト ・同 ト ・ヨ ト ・ヨ ト ・ シ ・ つ へ ()

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then

(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

(b) if m = 0, (M, J, θ) is conformally equivalent to a standard $S^3 (\simeq \mathbb{H}^1)$.

• The proof uses a tricky integration by parts: the main idea was to bring-in the Paneitz operator to write the mass as sum of squares.

イロト 不同 トイヨト イヨト ニヨー つくで

Theorem 1 ([Cheng-M.-Yang, '17])

Let (M^3, J, θ) be a compact CR manifold. Suppose the Webster class is positive, and that the Paneitz operator P is non-negative. Let $p \in M$ and let $\tilde{\theta}$ be a blown-up of contact form at p. Then

(a) the CR mass m of $(M, J, \tilde{\theta})$ is non negative;

(b) if m = 0, (M, J, θ) is conformally equivalent to a standard $S^3 (\simeq \mathbb{H}^1)$.

• The proof uses a tricky integration by parts: the main idea was to bring-in the Paneitz operator to write the mass as sum of squares.

• Positivity of the mass implies that the Sobolev-Webster quotient of the manifold is lower than that of the sphere, and minimizers exist.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Andrea Malchiodi (SNS)

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

200

イロト イヨト イヨト 一日

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

San

イロト イボト イモト 一日

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_s^3 , from [H.Rossi, '65]

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < つへの

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_s^3 , from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^3 but a distorted complex rotation $J_{(s)}$ for $s \in (-\varepsilon, \varepsilon)$

$$J_{(s)}(Z_1^{S^3} + s\bar{Z}_1^{S^3}) = i\left(Z_1^{S^3} + s\bar{Z}_1^{S^3}\right).$$

4日 > 4日 > 4日 > 4日 > 4日 > 10 000

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_s^3 , from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^3 but a distorted complex rotation $J_{(s)}$ for $s \in (-\varepsilon, \varepsilon)$

$$J_{(s)}(Z_1^{S^3} + s\bar{Z}_1^{S^3}) = i\left(Z_1^{S^3} + s\bar{Z}_1^{S^3}\right).$$

イロト 不同 トイヨト イヨト ニヨー つくで

18/25

Pisa, Feb. 10, 2020

In these cases the Paneitz operator cannot be positive-definite.

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_s^3 , from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^3 but a distorted complex rotation $J_{(s)}$ for $s \in (-\varepsilon, \varepsilon)$

$$J_{(s)}(Z_1^{S^3} + s\bar{Z}_1^{S^3}) = i\left(Z_1^{S^3} + s\bar{Z}_1^{S^3}\right).$$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < つへの

18/25

Pisa, Feb. 10, 2020

In these cases the Paneitz operator cannot be positive-definite.

Theorem 2 ([Cheng-M.-Yang, '19])

Andrea Malchiodi (SNS)

Consider S^3 in \mathbb{C}^2 . Its standard CR structure $J_{(0)}$ is given by

$$J_{(0)}Z_1^{S^3} = iZ_1^{S^3}; \qquad Z_1^{S^3} = \bar{z}^2 \frac{\partial}{\partial z^1} - \bar{z}^1 \frac{\partial}{\partial z^2}.$$

It turns out that most perturbations of the standard structure are non embeddable ([Burns-Epstein, '90]).

Interesting case are Rossi spheres S_s^3 , from [H.Rossi, '65]: these are homogeneous, of positive Webster class, have the same contact structure as the standard S^3 but a distorted complex rotation $J_{(s)}$ for $s \in (-\varepsilon, \varepsilon)$

$$J_{(s)}(Z_1^{S^3} + s\bar{Z}_1^{S^3}) = i\left(Z_1^{S^3} + s\bar{Z}_1^{S^3}\right).$$

In these cases the Paneitz operator cannot be positive-definite.

Theorem 2 ([Cheng-M.-Yang, '19]) For small $s \neq 0$, the CR mass of S_s^3 is negative $(m_s \simeq -18\pi s^2)$. Andrea Malchiodi (SNS)

18/25

Some ideas of the proof

Andrea Malchiodi (SNS)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ かへで
Pisa, Feb. 10, 2020 19 / 25

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function).

E

200

イロト イヨト イヨト イヨト

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Sar

イロト イポト イラト イラト 二日

Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^3$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^2} + A_{(s)}$, with $A_{(s)}$ unknown.

San

<ロト < 同ト < 三ト < 三ト 三 三

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^3$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^2} + A_{(s)}$, with $A_{(s)}$ unknown.

On the other hand, it is possible to Taylor-expand in s the equation

$$-4\Delta_b^{(s)}G_{(s)} + W_{(s)}G_{(s)} = \delta_p$$

(日) (四) (王) (王) (王)

Pisa, Feb. 10, 2020

200

19/25

away from p, in the standard coordinates of \mathbb{C}^2 .

Andrea Malchiodi (SNS)

As we saw, the mass is related to the next-order term in the expansion of the Green's function (Robin's function). Determining it is in general a hard problem, since it is a global object.

Fixing a pole $p \in S^3$, we find suitable s-coordinates (near p) to expand the Green's function as $G_{p,(s)} \simeq \frac{1}{\rho_{(s)}^2} + A_{(s)}$, with $A_{(s)}$ unknown.

On the other hand, it is possible to Taylor-expand in s the equation

$$-4\Delta_b^{(s)}G_{(s)} + W_{(s)}G_{(s)} = \delta_p$$

away from p, in the standard coordinates of \mathbb{C}^2 .

One then needs to verify that the two expansions match, obtaining then the asymptotic behaviour for $s \to 0$ of $A_{(s)}$, proportional to the mass. \Box

San

(日) (四) (王) (王) (王)

Andrea Malchiodi (SNS)

 ・ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ つ へ ()
 Pisa, Feb. 10, 2020
 20 / 25

Theorem 3 ([Cheng-M.-Yang, '19])

Theorem 3 ([Cheng-M.-Yang, '19])

For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^3).

Theorem 3 ([Cheng-M.-Yang, '19])

For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^3).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_s^3 it has low Sobolev-Webster quotient also on the standard $S^3 = S_0^3$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ● ● ●

Theorem 3 ([Cheng-M.-Yang, '19])

For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^3).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_s^3 it has low Sobolev-Webster quotient also on the standard $S^3 = S_0^3$.

- Minima of the quotient on S_0^3 were classified in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti functions: call them U_{λ}^{CR} ($\lambda > 0$).

・ロト ・回ト ・ヨト ・ヨト ・ 日・ つへつ

Theorem 3 ([Cheng-M.-Yang, '19])

For small $s \neq 0$ the infimum of the Sobolev-Webster quotient of Rossi spheres is not attained (and is equal to that of the standard S^3).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S_s^3 it has low Sobolev-Webster quotient also on the standard $S^3 = S_0^3$.

- Minima of the quotient on S_0^3 were classified in [Jerison-Lee, '88] as (CR counterparts of) Aubin-Talenti functions: call them U_{λ}^{CR} ($\lambda > 0$).

- For $|s| \neq 0$ small, the Webster quotient of the functions U_{λ}^{CR} has a profile of this kind, for λ in a fixed compact set of $(0, \infty)$

Andrea Malchiodi (SNS)

 ・ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ク へ ()
 Pisa, Feb. 10, 2020 21 / 25

It remains to understand the case in which minimizers were close in the Sobolev sense to functions U_{λ}^{CR} with λ large (λ small is analogous).

200

《日》《四》《王》《王》 [] []

It remains to understand the case in which minimizers were close in the Sobolev sense to functions U_{λ}^{CR} with λ large (λ small is analogous).

For s fixed and λ large (depending on s) it is possible to show that $Q_{SW}^{(s)}(U_{\lambda}^{CR}) \simeq Q_{SW}^{(0)}(S^3) - \frac{m_{(s)}}{\lambda^2} + O(\lambda^{-3})$, which is larger than $Q_{SW}^{(0)}(S^3)$ since the mass $m_{(s)}$ is negative.

NO C

(日) (四) (王) (王) (王)

It remains to understand the case in which minimizers were close in the Sobolev sense to functions U_{λ}^{CR} with λ large (λ small is analogous).

For s fixed and λ large (depending on s) it is possible to show that $Q_{SW}^{(s)}(U_{\lambda}^{CR}) \simeq Q_{SW}^{(0)}(S^3) - \frac{m_{(s)}}{\lambda^2} + O(\lambda^{-3})$, which is larger than $Q_{SW}^{(0)}(S^3)$ since the mass $m_{(s)}$ is negative.

However in this way we cannot guarantee high energy for all values of λ : some *intermediate range* is missing.

・ロト ・回ト ・ヨト ・ヨト ・ ヨー ・ つへつ

It remains to understand the case in which minimizers were close in the Sobolev sense to functions U_{λ}^{CR} with λ large (λ small is analogous).

For s fixed and λ large (depending on s) it is possible to show that $Q_{SW}^{(s)}(U_{\lambda}^{CR}) \simeq Q_{SW}^{(0)}(S^3) - \frac{m_{(s)}}{\lambda^2} + O(\lambda^{-3})$, which is larger than $Q_{SW}^{(0)}(S^3)$ since the mass $m_{(s)}$ is negative.

However in this way we cannot guarantee high energy for all values of λ : some *intermediate range* is missing. To cover that too, we exploit an *isomorphism* between S^3_{+s} and S^3_{-s} .

・ロト ・回ト ・ヨト ・ヨト ・ ヨー ・ つへつ

It remains to understand the case in which minimizers were close in the Sobolev sense to functions U_{λ}^{CR} with λ large (λ small is analogous).

For s fixed and λ large (depending on s) it is possible to show that $Q_{SW}^{(s)}(U_{\lambda}^{CR}) \simeq Q_{SW}^{(0)}(S^3) - \frac{m_{(s)}}{\lambda^2} + O(\lambda^{-3})$, which is larger than $Q_{SW}^{(0)}(S^3)$ since the mass $m_{(s)}$ is negative.

However in this way we cannot guarantee high energy for all values of λ : some *intermediate range* is missing. To cover that too, we exploit an *isomorphism* between S^3_{+s} and S^3_{-s} . By evenness in the parameter s, this implies that indeed

$$Q_{SW}^{(s)}(U_{\lambda}^{CR}) \simeq Q_{SW}^{(0)}(S^3) - \frac{m_{(s)}}{\lambda^2} + O(s^2\lambda^{-3}),$$

イロト イヨト イヨト 一日

Pisa, Feb. 10, 2020

San

21/25

proving a strict inequality for all λ 's.

Andrea Malchiodi (SNS)

Comments

Andrea Malchiodi (SNS)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで
Pisa, Feb. 10, 2020 22 / 25

Comments

We have seen that the CR Sobolev quotient of S_s^3 , a <u>closed</u> manifold, behaves like that of a domain in \mathbb{R}^n .
Comments

We have seen that the CR Sobolev quotient of S_s^3 , a <u>closed</u> manifold, behaves like that of a domain in \mathbb{R}^n . This fact seems to be tightly related to the non-embeddability of Rossi spheres.

3

DQC

Comments

We have seen that the CR Sobolev quotient of S_s^3 , a <u>closed</u> manifold, behaves like that of a domain in \mathbb{R}^n . This fact seems to be tightly related to the non-embeddability of Rossi spheres.

To understand the phenomenon more in general, recall that the standard metric of S^n is a saddle point of the Einstein-Hilbert functional

$$g \longrightarrow \int_{S^n} R_g dV_g.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ● ● ●

We have seen that the CR Sobolev quotient of S_s^3 , a <u>closed</u> manifold, behaves like that of a domain in \mathbb{R}^n . This fact seems to be tightly related to the non-embeddability of Rossi spheres.

To understand the phenomenon more in general, recall that the standard metric of S^n is a saddle point of the Einstein-Hilbert functional

$$g \longrightarrow \int_{S^n} R_g dV_g.$$

It is a <u>minimum</u> in the conformal class and a <u>maximum</u> outside of it.

イロト 不同 ト 不同 ト 不同 ト 一日 - うくつ

22/25

Pisa, Feb. 10, 2020

Andrea Malchiodi (SNS)

We have seen that the CR Sobolev quotient of S_s^3 , a <u>closed</u> manifold, behaves like that of a domain in \mathbb{R}^n . This fact seems to be tightly related to the non-embeddability of Rossi spheres.

To understand the phenomenon more in general, recall that the standard metric of S^n is a saddle point of the Einstein-Hilbert functional

$$g \longrightarrow \int_{S^n} R_g dV_g.$$

It is a <u>minimum</u> in the conformal class and a <u>maximum</u> outside of it.

In the (3D) CR case one has positive second variations also for special non-embeddable directions ([Bland, '94]).

Andrea Malchiodi (SNS)

We have seen that the CR Sobolev quotient of S_s^3 , a <u>closed</u> manifold, behaves like that of a domain in \mathbb{R}^n . This fact seems to be tightly related to the non-embeddability of Rossi spheres.

To understand the phenomenon more in general, recall that the standard metric of S^n is a saddle point of the Einstein-Hilbert functional

$$g \longrightarrow \int_{S^n} R_g dV_g.$$

It is a <u>minimum</u> in the conformal class and a <u>maximum</u> outside of it.

In the (3D) CR case one has positive second variations also for special non-embeddable directions ([Bland, '94]). It would be interesting to observe this change of sign also the mass and the Sobolev quotient.

イロト イヨト イヨト イヨト 一日 - のへの

Andrea Malchiodi (SNS)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ④ Q ○
Pisa, Feb. 10, 2020 23 / 25

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]).

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open.

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified.

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Assuming finite volume, it is done in [Jerison-Lee, '88].

Sac

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. Howeverwe may not have this assumption, and moving planes do not work.

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. Howeverwe may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$-\Delta_b u = u^p$$
 in \mathbb{H}^n ; $p < \frac{Q+2}{Q-2}$.

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < つへの

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. Howeverwe may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$-\Delta_b u = u^p$$
 in \mathbb{H}^n ; $p < \frac{Q+2}{Q-2}$.

In \mathbb{R}^n it was shown in [Gidas-Spruck, '81] that $u \equiv 0$.

Andrea Malchiodi (SNS)

Another problem recently settled is compactness of solutions to Yamabe's equation ([Druet, '04], [Li-Zhang, '05-'06], [Brendle-Marques, '08], [Khuri-Marques-Schoen, '09]). Compactness holds if and only if $n \leq 24$.

Compactness for the CR case is entirely open. One reason is that profiles of blow-ups are not classified. This concerns entire positive solutions to

$$-\Delta_b u = u^{\frac{Q+2}{Q-2}} \quad \text{in } \mathbb{H}^n; \qquad Q = 2n+2.$$

Assuming finite volume, it is done in [Jerison-Lee, '88]. Howeverwe may not have this assumption, and moving planes do not work.

A related problem concerns the classification of

$$-\Delta_b u = u^p$$
 in \mathbb{H}^n ; $p < \frac{Q+2}{Q-2}$.

In \mathbb{R}^n it was shown in [Gidas-Spruck, '81] that $u \equiv 0$. In \mathbb{H}^n , there are partial results in [Birindelli-Capuzzo Dolcetta-Cutri, 97], for $p < \frac{Q}{Q=2}$.

Andrea Malchiodi (SNS)

Pisa, Feb. 10, 2020 23 / 25

A similar problem holds for singular solutions on $\mathbb{H}^n \setminus \{0\}$.

Andrea Malchiodi (SNS)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで
Pisa, Feb. 10, 2020 24 / 25

A similar problem holds for singular solutions on $\mathbb{H}^n \setminus \{0\}$. In $\mathbb{R}^n \setminus \{0\}$ such solutions were classified in [Caffarelli-Gidas-Spruck, '89] and were shown to be radial.

A similar problem holds for singular solutions on $\mathbb{H}^n \setminus \{0\}$. In $\mathbb{R}^n \setminus \{0\}$ such solutions were classified in [Caffarelli-Gidas-Spruck, '89] and were shown to be radial.

For the Heisenberg group there is a recent construction in [Afeltra, '19], where solutions similar to *Delaunay's unduloids* were produced.

Thanks for your attention

1

990

・ロト ・四ト ・モト ・モト