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The Yamabe problem

On compact Riemannian manifolds of dimension n ≥ 3, Yamabe in 1960
posed the problem of finding conformal metrics with constant scalar
curvature.

This is a conformal generalization of the Uniformization problem, and
Yamabe intended to use it as a step to solve Poincaré’s conjecture.

If Rg is the scalar curvature, setting g̃(x) = λ(x)g(x) = u(x)
4

n−2 g(x),
u(x) one has to find on M a positive solution of

(Y ) −cn∆u+Rgu = Ru
n+2
n−2 ; cn = 4

n− 1

n− 2
, R ∈ R.
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The Sobolev-Yamabe quotient

Recall the equation

(Y ) −cn∆u+Rgu = Ru
n+2
n−2 ; cn = 4

n− 1

n− 2
, R ∈ R.

Considering R as a Lagrange multiplier, one can try to find solutions by
minimizing the Sobolev-Yamabe quotient

QSY (u) =

∫
M

(
cn|∇u|2 +Rgu

2
)
dV(∫

M |u|2
∗dV

) 2
2∗

; 2∗ =
2n

n− 2
.

The Sobolev-Yamabe constant is defined as

Y (M, [g]) = inf
u6≡0

QSY (u).

The number Y (M, [g]) depends only on the conformal class [g] of g.

(M, [g]) is said to be of negative, zero or positive Yamabe class when
Y (M, [g]) is negative, zero or positive.
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The Sobolev quotient in Rn (n ≥ 3)

In Rn one has the Sobolev-Gagliardo-Nirenberg inequality

‖u‖2
L2∗ (Rn)

≤ Bn
∫
Rn

|∇u|2dx; u ∈ C∞c (Rn).

As for Y (M, [g]), define the Sobolev quotient Sn = infu

∫
Rn cn|∇u|

2dx

‖u‖2
L2∗ (Rn)

.

([Aubin, ’76], [Talenti, ’76]) Completing C∞c (Rn), Sn is attained by

Up,λ(x) :=
λ

n−2
2

(1 + λ2|x− p|2)
n−2
2

; p ∈ Rn, λ > 0.

• Since Sn is conformal to Rn, one has that Y (Sn, [gSn ]) = Sn.
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The Sobolev quotient of domains of Rn

Also for a (say, bounded smooth) domain Ω ⊆ Rn one can consider the
Sobolev quotient for functions supported in Ω

inf
u∈C∞c (Ω)

∫
Rn cn|∇u|2dx
‖u‖2

L2∗ (Rn)

.

In this case the infimum coincides with Sn, but it is never attained
because of the lack of compactness of the embedding.

Minimizing sequences un tend to concentrate indefinitely inside Ω.

Ω

un
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Brief history on the Yamabe problem

- In 1960 Yamabe attempted to solve (Y ) by subcritical approximation.

- In 1968 Trudinger proved that (Y ) is solvable provided Y (M, [g]) ≤ εn
for some εn > 0. In particular for negative and zero Yamabe class.

- In 1976 Aubin proved that (Y ) is solvable provided Y (M, [g]) < Sn.
He also verified this inequality when n ≥ 6 and (M, g) is not locally
conformally flat, unless (M, g) ' (Sn, gSn).

- In 1984 Schoen proved that Y (M, [g]) < Sn in all other cases, i.e. n ≤ 5
or (M, g) locally conformally flat, unless (M, g) ' (Sn, gSn).
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On the inequality Y (M, [g]) < Sn

The inequality is proved using Aubin-Talenti’s functions. Given p ∈M ,

consider a conformal metric g̃ ' U
4

n−2

p,λ g with λ large. Since locally
(M, g) ' Rn and since Up,λ is highly concentrated, QSY (Up,λ) ' Sn,
with small correction terms due to the geometry of M .

Since Up,λ decays like 1
|x|n−2 at infinity, it is more localized in large dimen-

sion. Aubin proved that for n ≥ 6 the corrections are given by − |Wg |2(p)
λ4

,
a local quantity depending on the Weyl tensor.

For n ≤ 5 the correction is of global nature. Heuristics: if u ' Up,λ then

Lgu := −cn∆u+Rgu ' U
n+2
n−2

p,λ '
1

λ
δp.

At large scales an approximate solution looks like the Green’s function
Gp of the operator Lg. If Gp ' 1

|x|n−2 +A at p, the correction is −A/λn−2.
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A brief excursion in general relativity

To understand the value of A, general relativity comes into play.

A manifold (N3, g̃) is asymptotically flat if it is a union of a compact
set K (possibly with topology), and such that N \ K (called end) is
diffeomorphic to R3 \B1(0). It is required that the metric satisfies

g̃ij → δij at infinity (with some rate).

N

N \K

Such manifolds describe initial data sets for isolated gravitational sy-
stems, and a similar definition holds for multiple ends.
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Some examples

Example 1: Schwartzschild metric (two ends). It describes a static
black hole of total mass m. In polar coordinates (r, ξ) the expression is

g̃Schw =
(

1 +
m

2r

)4 (
dr2 + r2dξ2

)
.

At r = m
2 there is a minimal surface, representing the event horizon.

Example 2: Conformal blow-ups. Given a compact Riemannian
three-manifold (M, g) and p ∈ M , one can consider a conformal metric
on g̃ on M \ {p} of the following form

g̃ = f(x) g; f(x) ' 1

d(x, p)4
.

Then, in normal coordinates x at p, setting y = x
|x|2 (Kelvin inversion)

one has an asymptotically flat manifold in y-coordinates

g̃(x) ' dx2

|x|4
' dy2, (y large).
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Einstein’s equation in vacuum

It governs the structure of space-time according to general relativity

(Einstein tensor) Eij := Rij −
1

2
Rg gij = 0.

Here Rij is the Ricci tensor, and Rg the scalar curvature.

This equation is variational, with Euler-Lagrange functional given by

A(g) :=

∫
M
Rg dVg Einstein-Hilbert functional.

In fact, one has

d

dg
(Rg dVg) [h] = −

(
hijEij + div X

)
dVg,

where X is some vector field.
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The mass of an asymptotically flat manifold

If we consider variations that preserve asymptotic flatness, then the
divergence term has a role (flux at infinity), and

d

dg
(A(g) +m(g))[h] =

∫
M
hijEij dV.

The quantity m(g), called ADM mass ([ADM, ’60]), is defined as

m(g) := lim
r→∞

∮
Sr

(∂k gjk − ∂j gkk) νjdσ.

Example 1: Schwartzschild. mADM = black-hole mass.

Example 2: Conformal blow-ups. If Gp is the Green’s function of
an elliptic operator on M̂ with pole at p, then Gp(x) ' d(x, p)−1.
If f(x) = G4

p ' d(x, p)−4 and g̃(x) = f(x)g(x), then

mADM = lim
x→p

(
Gp(x)− 1

d(x, p)

)
= A.
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The Positive Mass Theorem

Theorem ([Schoen-Yau, ’79 (’81, ’17)])

If Rg ≥ 0 then m(g) ≥ 0. In case m(g) = 0, then (M, g) is isometric to
the flat Euclidean space (R3, dx2).

Physically, this means that a positive local energy density implies a
positive global energy for the system. (But one cannot just integrate!)

The proof used the construction of stable asymptotically planar minimal
surfaces assumingm < 0, obtaining then a contradiction from the second
variation formula using Rg ≥ 0.
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CR manifolds

We deal with three-dimensional manifolds with a non-integrable two-
dimensional distribution (contact structure) ξ.

We also have a CR structure (complex rotation) J : ξ → ξ s.t. J2 = −1.

Given J as above, we have locally a vector field Z1 such that

JZ1 = iZ1; JZ1 = −iZ1 where Z1 = (Z1).

A contact form θ is a 1-form annihilating ξ: we assume that θ ∧ dθ 6= 0
everywhere on M (pseudoconvexity).

This condition is quite important for the study of biholomorphic map-
pings and the ∂-Neumann problem ([Beals-Fefferman-Grossman, ’83]).
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Examples

The Heisenberg group (flat model) H1 = {(z, t) ∈ C× R}. Setting

◦
Z1=

1√
2

(
∂

∂z
+ iz

∂

∂t

)
;

◦
Z1=

1√
2

(
∂

∂z
− iz ∂

∂t

)
,

ξ0 is spanned by real and imaginary parts of
◦
Z1. The standard CR

structure J0 : ξ0 → ξ0 verifies J0

◦
Z1= i

◦
Z1.

◦
θ= dt+ izdz − izdz.

Boundaries of complex domains. Consider Ω ⊂ C2 and J2 the stan-
dard complex rotation in C2. Given p ∈ ∂Ω one can consider the subset
ξp of Tp∂Ω which is invariant by J2. We take ξp as contact distribution,
and J |ξp as the CR structure J .
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The Webster curvature of a CR three-manifold

In 1983 Webster introduced scalar curvature W , to study the biholomor-
phy problem, which behaves conformally like the scalar curvature.

Changing conformally the contact form, if θ̂ = u2θ, then Wθ̂ is given by

−4∆bu+Wθu = Wθ̂u
3.

Here ∆b is the sub-laplacian on M : roughly, the laplacian in the contact
directions (use Hörmander’s theory (commutators) to recover regularity).

As before, we can define a Sobolev-Webster quotient, a Webster class, and
try to uniformizeW as we did for the scalar curvature. In real dimension
n ≥ 5 Jerison and Lee (1989) proved the counterparts of Trudinger and
Aubin’s results. In real dimension n = 3 non-minimal solutions were
found in [Gamara (et al.), ’01].
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Green’s function and mass in three dimensions (CR)

In 3D the Green’s function still appears. In suitable coordinates at p ∈M

Gp ' 1/ρ2 +A,

where ρ4(z, t) = |z|4 + t2, (z, t) ∈ H1 is the homogeneous distance.
Blowing-up the contact form θ using Gp, we obtain an asymptotically
(Heisenberg) flat manifold and define its mass, proportional to A.

However, one crucial difference between dimension three and higher is
the embeddability of abstract CR manifolds ([Chen-Shaw, ’01]). There is
a fourth-order (Paneitz) operator P = ∆2

b + l.o.t. which plays a role here.

Theorem ([Chanillo-Chiu-Yang, ’12]) Let M3 be a compact CR
manifold. If P ≥ 0 and W > 0, then M embeds into some CN .

More relations between P and embeddability properties of CR manifolds
in [Chanillo-Case-Yang, ’16], [Takeuchi, ’19].
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A positive mass theorem in CR geometry

Theorem 1 ([Cheng-M.-Yang, ’17])

Let (M3, J, θ) be a compact CR manifold. Suppose the Webster class is
positive, and that the Paneitz operator P is non-negative. Let p ∈ M
and let θ̃ be a blown-up of contact form at p. Then

(a) the CR mass m of (M,J, θ̃) is non negative;

(b) if m = 0, (M,J, θ) is conformally equivalent to a standard S3(' H1).

• The proof uses a tricky integration by parts: the main idea was to
bring-in the Paneitz operator to write the mass as sum of squares.

• Positivity of the mass implies that the Sobolev-Webster quotient of the
manifold is lower than that of the sphere, and minimizers exist.
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On the positivity condition for the Paneitz operator

Consider S3 in C2. Its standard CR structure J(0) is given by

J(0)Z
S3

1 = iZS
3

1 ; ZS
3

1 = z̄2 ∂

∂z1
− z̄1 ∂

∂z2
.

It turns out that most perturbations of the standard structure are non
embeddable ([Burns-Epstein, ’90]).

Interesting case are Rossi spheres S3
s , from [H.Rossi, ’65]: these are

homogeneous, of positive Webster class, have the same contact structure
as the standard S3 but a distorted complex rotation J(s) for s ∈ (−ε, ε)

J(s)(Z
S3

1 + sZ̄S
3

1 ) = i
(
ZS

3

1 + sZ̄S
3

1

)
.

In these cases the Paneitz operator cannot be positive-definite.

Theorem 2 ([Cheng-M.-Yang, ’19])

For small s 6= 0, the CR mass of S3
s is negative (ms ' −18πs2).
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Some ideas of the proof

As we saw, the mass is related to the next-order term in the expansion
of the Green’s function (Robin’s function). Determining it is in general
a hard problem, since it is a global object.

Fixing a pole p ∈ S3, we find suitable s-coordinates (near p) to expand
the Green’s function as Gp,(s) ' 1

ρ2
(s)

+A(s), with A(s) unknown.

On the other hand, it is possible to Taylor-expand in s the equation

−4∆
(s)
b G(s) +W(s)G(s) = δp

away from p, in the standard coordinates of C2.

One then needs to verify that the two expansions match, obtaining then
the asymptotic behaviour for s→ 0 of A(s), proportional to the mass.
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CR Sobolev quotient of Rossi spheres

Theorem 3 ([Cheng-M.-Yang, ’19])
For small s 6= 0 the infimum of the Sobolev-Webster quotient of Rossi
spheres is not attained (and is equal to that of the standard S3).

Sketch of the proof.

- If a function has low Sobolev-Webster quotient on a Rossi sphere S3
s it

has low Sobolev-Webster quotient also on the standard S3 = S3
0 .

- Minima of the quotient on S3
0 were classifed in [Jerison-Lee, ’88] as (CR

counterparts of) Aubin-Talenti functions: call them UCRλ (λ > 0).

- For |s| 6= 0 small, the Webster quotient of the functions UCRλ has a
profile of this kind, for λ in a fixed compact set of (0,∞)

0

Q
(s)
SW (UCR

λ )

λ
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CR Sobolev quotient of Rossi spheres

It remains to understand the case in which minimizers were close in the
Sobolev sense to functions UCRλ with λ large (λ small is analogous).

For s fixed and λ large (depending on s) it is possible to show that
Q

(s)
SW (UCRλ ) ' Q(0)

SW (S3)− m(s)

λ2
+O(λ−3), which is larger than Q(0)

SW (S3)
since the mass m(s) is negative.

However in this way we cannot guarantee high energy for all values of
λ: some intermediate range is missing. To cover that too, we exploit an
isomorphism between S3

+s and S3
−s. By evenness in the parameter s, this

implies that indeed

Q
(s)
SW (UCRλ ) ' Q(0)

SW (S3)−
m(s)

λ2
+O(s2λ−3),

proving a strict inequality for all λ’s.
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Comments

We have seen that the CR Sobolev quotient of S3
s , a closed manifold,

behaves like that of a domain in Rn. This fact seems to be tightly related
to the non-embeddability of Rossi spheres.

To understand the phenomenon more in general, recall that the standard
metric of Sn is a saddle point of the Einstein-Hilbert functional

g −→
∫
Sn

RgdVg.

It is a minimum in the conformal class and a maximum outside of it.

In the (3D) CR case one has positive second variations also for spe-
cial non-embeddable directions ([Bland, ’94]). It would be interesting to
observe this change of sign also the mass and the Sobolev quotient.
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Some open problems

Another problem recently settled is compactness of solutions to Yama-
be’s equation ([Druet, ’04], [Li-Zhang, ’05-’06], [Brendle-Marques, ’08],
[Khuri-Marques-Schoen, ’09]). Compactness holds if and only if n ≤ 24.

Compactness for the CR case is entirely open. One reason is that profiles
of blow-ups are not classified. This concerns entire positive solutions to

−∆bu = u
Q+2
Q−2 in Hn; Q = 2n+ 2.

Assuming finite volume, it is done in [Jerison-Lee, ’88]. Howeverwe may
not have this assumption, and moving planes do not work.

A related problem concerns the classification of

−∆bu = up in Hn; p <
Q+ 2

Q− 2
.

In Rn it was shown in [Gidas-Spruck, ’81] that u ≡ 0. In Hn, there are
partial results in [Birindelli-Capuzzo Dolcetta-Cutrì, 97], for p < Q

Q−2 .
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[Khuri-Marques-Schoen, ’09]). Compactness holds if and only if n ≤ 24.

Compactness for the CR case is entirely open. One reason is that profiles
of blow-ups are not classified. This concerns entire positive solutions to

−∆bu = u
Q+2
Q−2 in Hn; Q = 2n+ 2.

Assuming finite volume, it is done in [Jerison-Lee, ’88]. Howeverwe may
not have this assumption, and moving planes do not work.

A related problem concerns the classification of

−∆bu = up in Hn; p <
Q+ 2

Q− 2
.

In Rn it was shown in [Gidas-Spruck, ’81] that u ≡ 0. In Hn, there are
partial results in [Birindelli-Capuzzo Dolcetta-Cutrì, 97], for p < Q

Q−2 .
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A similar problem holds for singular solutions on Hn \ {0}.

In Rn \ {0}
such solutions were classified in [Caffarelli-Gidas-Spruck, ’89] and were
shown to be radial.

For the Heisenberg group there is a recent construction in [Afeltra, ’19],
where solutions similar to Delaunay’s unduloids were produced.
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Thanks for your attention
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