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The classical orbit determination problem (Gauss 1809) becomes difficult, both
conceptually and numerically, when applied to a chaotic orbit, if the time span
of the observations being used in a least squares fit is much longer than the
Lyapounov time. Nevertheless, such problems practically occur, both in Solar
System Dynamics (e.g., in long term impact monitoring for NEO) and in As-
trodynamics (e.g., in long satellite tours around the giant planets). Spoto and
Milani (2016), and Serra, Spoto and Milani (2018) have tried to tackle such
a complex problem by starting from a model problem, the discrete dynamical
system defined by the standard map (discretization of a nonlinear pendulum):
they have provided numerical evidence that the asymptotic behavior (as the
observed time span goes to infinity) changes radically whenever dynamical pa-
rameters are included in the fit parameters, besides the initial conditions, and
pointed out the relationship between these results and a finite time version of
the shadowing lemma.

In this work we give for the first time analytical, rigorous proofs of theorems
on some other model problems, starting from the Fibonacci map on the two-
dimensional torus. For the non-homogeneous Fibonacci map

xk+1 = xk + xk−1 + µ,

where the variable x is considered as an angle, if the observations of both coor-
dinates (xk, xk−1) are available for −N ≤ k ≤ N (with standard deviation σ),
we prove that the fit limited to the two initial conditions (x1, x0) has a post-fit
standard deviation STD(x0) = STD(x1) ' σ cα−N where α is the golden ratio
(the largest Lyapounov multiplier) and c = 1. If also the dynamical parameter
µ is included in the fit, then STD(x0) = STD(x1) = STD(µ) ' σ d/

√
N where

d = 1/2. In short, the uncertainty of the solution for µ decreases as 1/
√
N ,

like in the standard Gaussian statistics (e.g., in the central limit theorem). This
result is enough to prove that the conjecture proposed by Wisdom (Icarus 1987)
is not true, at least not in this case.

Then, we have considered a more general dynamical system on the 2-torus
of the form

Xk+1 = AXk + µF
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where A is a 2× 2 matrix with integer coefficients and with an integer inverse,
thus detA = ±1 (belonging to the group GL(2,Z)). The matrix A is hyper-
bolic, with irrational eigenvalues, in all but a finite number of distinct cases.
In the hyperbolic cases we have studied the same problem and proven, under
the additional hypothesis that the matrix A is symmetric, that the same results
apply for the asymptotic behavior, only with different values of the constants
c, d, depending on A and on the vector F . These examples are an infinite,
enumerable set of dynamical systems on the two-dimensional torus which are
distinct (neither conjugate nor subgroups in GL(2,Z)). All these examples have
the common property of being Anosov diffeomorphisms on a compact manifold,
uniformly chaotic and ergodic (Arnold and Sinai 1962), and structurally stable
(Moser 1969).

We propose the conjecture that the same asymptotic behavior is shared
by the orbit determination on all Anosov diffeomorphisms. The case of the
dynamical systems, such as the standard map and the three-body problem, in
which there are chaotic orbits (on invariant hyperbolic sets) and ordered orbits
(on invariant KAM tori), plus other less known behaviors, is necessarily more
difficult: indeed the numerical evidence points to a less uniform behavior. Still
some of the ideas developed in our research on model problems can already be
applied to difficult practical problems.
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