ORBITS OF N-EXPANSIONS WITH A FINITE SET OF DIGITS

JAAP DE JONGE

Abstract

For $N \in \mathbb{N}$ and $\alpha \in \mathbb{R}$ such that $0<\alpha \leq \sqrt{N}-1$, the continued fraction map $T_{\alpha}:[\alpha, \alpha+1] \rightarrow[\alpha, \alpha+1)$ is defined as $T_{\alpha}(x):=\frac{\bar{N}}{x}-d(x)$, where $d:[\alpha, \alpha+1] \rightarrow \mathbb{N}$ is defined by $d(x):=\left|\frac{N}{x}-\alpha\right|$. For $N \geq 7$ there are α, intervals $(a, b) \subset[\alpha, \alpha+1]$ and $n_{0} \in \mathbb{N}$ such that $T_{\alpha}^{n}([\alpha, \alpha+1]) \cap(a, b)=\emptyset$ for all $n \geq n_{0}$, save for fixed points under T_{α} of (a, b). These gaps (a, b) are investigated in the square $\Upsilon_{\alpha}:=[\alpha, \alpha+1] \times[\alpha, \alpha+1)$, where the orbits $T_{\alpha}^{k}(x), k=0,1,2, \ldots$ of numbers $x \in[\alpha, \alpha+1]$ are represented as cobwebs. The squares Υ_{α} are the union of fundamental regions, which are related to the cylinder sets of the map T_{α}, according to the finitely many values of d in T_{α}. In the case of two cylinders there may be none, one or two gaps on $[\alpha, \alpha+1]$; in the case of three cylinders, there are either none, one, two or three gaps, depending both on N and α. In the case of four cylinders there are usually no gaps, except for the rare cases that there is one, very wide gap. In the case of five or more cylinders no gaps occur.

Jaap de Jonge, Delft University of Technology, department of Electrical Engineering, Mathematics and Computer Science, Mekelweg 4, 2628 CD Delft and University of Amsterdam, Korteweg - de Vries Institute for Mathematics, Science Park 105-107, 1098 XG Amsterdam, The Netherlands

E-mail address: c.j.dejonge@uva.nl, c.j.dejonge@tudelft.nl

