Some properties of optimal expansions in non-integer bases

Based on joint work with K. Dajani, V. Komornik and P. Loreti

Martijn de Vries

Pisa, December 11th, 2018

Outline

(1) Summary

Outline

(1) Summary
(2) Expansions with respect to a given finite alphabet

Outline

(1) Summary
(2) Expansions with respect to a given finite alphabet
(3) Optimal expansions

Outline

(1) Summary
(2) Expansions with respect to a given finite alphabet
(3) Optimal expansions
(4) Sketch of proof

Outline

(1) Summary
(2) Expansions with respect to a given finite alphabet
(3) Optimal expansions
(4) Sketch of proof
(5) Open problems

Outline

(1) Summary
(2) Expansions with respect to a given finite alphabet
(3) Optimal expansions

4 Sketch of proof
(5) Open problems
(6) References

ABSTRACT

Given a base $q \in(1,2]$ and a real number $x \in J_{q}:=[0,1 /(q-1)]$, we call a sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots$ of zeros and ones an optimal expansion of x if

ABSTRACT

Given a base $q \in(1,2]$ and a real number $x \in J_{q}:=[0,1 /(q-1)]$, we call a sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots$ of zeros and ones an optimal expansion of x if

- $\left(c_{i}\right)$ is an expansion of $x: x=\sum_{i=1}^{\infty} c_{i} q^{-i}$ and if

ABSTRACT

Given a base $q \in(1,2]$ and a real number $x \in J_{q}:=[0,1 /(q-1)]$, we call a sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots$ of zeros and ones an optimal expansion of x if

- $\left(c_{i}\right)$ is an expansion of $x: x=\sum_{i=1}^{\infty} c_{i} q^{-i}$ and if
- among all possible expansions of x, the partial sums $\sum_{i=1}^{n} c_{i} q^{-i}, \quad n=1,2, \ldots$ generated by the expansion $\left(c_{i}\right)$ are uniformly closest to x, i.e.,

ABSTRACT

Given a base $q \in(1,2]$ and a real number $x \in J_{q}:=[0,1 /(q-1)]$, we call a sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots$ of zeros and ones an optimal expansion of x if

- $\left(c_{i}\right)$ is an expansion of $x: x=\sum_{i=1}^{\infty} c_{i} q^{-i}$ and if
- among all possible expansions of x, the partial sums $\sum_{i=1}^{n} c_{i} q^{-i}, \quad n=1,2, \ldots$ generated by the expansion $\left(c_{i}\right)$ are uniformly closest to x, i.e.,
$\sum_{i=1}^{n} c_{i} q^{-i} \geq \sum_{i=1}^{n} d_{i} q^{-i}$ for each positive integer n and each other expansion $\left(d_{i}\right)$ of x.

ABSTRACT

Given a base $q \in(1,2]$ and a real number $x \in J_{q}:=[0,1 /(q-1)]$, we call a sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots$ of zeros and ones an optimal expansion of x if

- $\left(c_{i}\right)$ is an expansion of $x: x=\sum_{i=1}^{\infty} c_{i} q^{-i}$ and if
- among all possible expansions of x, the partial sums $\sum_{i=1}^{n} c_{i} q^{-i}, \quad n=1,2, \ldots$ generated by the expansion $\left(c_{i}\right)$ are uniformly closest to x, i.e.,
$\sum_{i=1}^{n} c_{i} q^{-i} \geq \sum_{i=1}^{n} d_{i} q^{-i}$ for each positive integer n and each other expansion $\left(d_{i}\right)$ of x.
Our main result states that, except for a countable set of bases in which every number in J_{q} has an optimal expansion, "most" numbers have no optimal expansion.

EXPANSIONS

- Fix a base $q>1$ and a finite alphabet $A=\left\{a_{0}, \ldots, a_{m}\right\}$ of real numbers satisfying $a_{0}<\cdots<a_{m}$.

EXPANSIONS

- Fix a base $q>1$ and a finite alphabet $A=\left\{a_{0}, \ldots, a_{m}\right\}$ of real numbers satisfying $a_{0}<\cdots<a_{m}$.
- By a sequence we mean a sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots \in A^{\mathbb{N}}$ of digits in A.

EXPANSIONS

- Fix a base $q>1$ and a finite alphabet $A=\left\{a_{0}, \ldots, a_{m}\right\}$ of real numbers satisfying $a_{0}<\cdots<a_{m}$.
- By a sequence we mean a sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots \in A^{\mathbb{N}}$ of digits in A.
- By an expansion of a real number x (in base q with respect to A) we mean a sequence $\left(c_{i}\right)$ satisfying

$$
\frac{c_{1}}{q}+\frac{c_{2}}{q^{2}}+\frac{c_{3}}{q^{3}}+\cdots=x
$$

The numbers c_{i} are sometimes called the digits of the expansion $\left(c_{i}\right)$.

EXISTENCE OF EXPANSIONS

Proposition

Each number $x \in J_{A, q}:=\left[a_{0} /(q-1), a_{m} /(q-1)\right]$ has at least one expansion if and only if the Pedicini condition holds:

$$
\max _{1 \leq j \leq m}\left(a_{j}-a_{j-1}\right) \leq \frac{a_{m}-a_{0}}{q-1}
$$

PROOF OF NECESSITY

The condition

$$
\max _{1 \leq j \leq m}\left(a_{j}-a_{j-1}\right) \leq \frac{a_{m}-a_{0}}{q-1}
$$

is necessary:

PROOF OF NECESSITY

The condition

$$
\max _{1 \leq j \leq m}\left(a_{j}-a_{j-1}\right) \leq \frac{a_{m}-a_{0}}{q-1}
$$

is necessary:
if $a_{\ell}-a_{\ell-1}>\left(a_{m}-a_{0}\right) /(q-1)$ for some ℓ, then none of the numbers in the nonempty interval

$$
\left(\frac{a_{\ell-1}}{q}+\sum_{i=2}^{\infty} \frac{a_{m}}{q^{i}}, \frac{a_{\ell}}{q}+\sum_{i=2}^{\infty} \frac{a_{0}}{q^{i}}\right)
$$

has an expansion.

PROOF OF SUFFICIENCY

- Suppose that $x \in J_{A, q}$. We define recursively an expansion $\left(b_{i}\right)$ of x by applying the greedy algorithm of Rényi: if for some positive integer n, b_{i} is already defined for $i<n$, then b_{n} is the largest digit in A satisfying $\sum_{i=1}^{n} b_{i} q^{-i} \leq x$.

PROOF OF SUFFICIENCY

- Suppose that $x \in J_{A, q}$. We define recursively an expansion $\left(b_{i}\right)$ of x by applying the greedy algorithm of Rényi: if for some positive integer n, b_{i} is already defined for $i<n$, then b_{n} is the largest digit in A satisfying $\sum_{i=1}^{n} b_{i} q^{-i} \leq x$.
- We may (and will) assume that $a_{0}=0$, because:

PROOF OF SUFFICIENCY

- Suppose that $x \in J_{A, q}$. We define recursively an expansion $\left(b_{i}\right)$ of x by applying the greedy algorithm of Rényi: if for some positive integer n, b_{i} is already defined for $i<n$, then b_{n} is the largest digit in A satisfying $\sum_{i=1}^{n} b_{i} q^{-i} \leq x$.
- We may (and will) assume that $a_{0}=0$, because:
- replacing a_{i} by $a_{i}-a_{0}$ for each i does not alter the inequality $\max _{1 \leq j \leq m}\left(a_{j}-a_{j-1}\right) \leq \frac{a_{m}-a_{0}}{q-1}$.

PROOF OF SUFFICIENCY

- Suppose that $x \in J_{A, q}$. We define recursively an expansion $\left(b_{i}\right)$ of x by applying the greedy algorithm of Rényi:
if for some positive integer n, b_{i} is already defined for $i<n$, then b_{n} is the largest digit in A satisfying $\sum_{i=1}^{n} b_{i} q^{-i} \leq x$.
- We may (and will) assume that $a_{0}=0$, because:
- replacing a_{i} by $a_{i}-a_{0}$ for each i does not alter the inequality $\max _{1 \leq j \leq m}\left(a_{j}-a_{j-1}\right) \leq \frac{a_{m}-a_{0}}{q-1}$.
- x has an expansion with respect to alphabet A if and only if $x-a_{0} /(q-1)$ has an expansion with respect to the alphabet $\left\{0, a_{1}-a_{0}, a_{2}-a_{0}, \ldots, a_{m}-a_{0}\right\}$.

PROOF OF SUFFICIENCY

- If $x=a_{m} /(q-1)$, then $b_{i}=a_{m}$ for all i so the algorithm provides an expansion.

PROOF OF SUFFICIENCY

- If $x=a_{m} /(q-1)$, then $b_{i}=a_{m}$ for all i so the algorithm provides an expansion.
- If $0 \leq x<a_{m} /(q-1)$, then there exists an index n such that $b_{n}<a_{m}$, and for each such n we have

$$
0 \leq x-\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}<\frac{\max _{1 \leq j \leq m}\left(a_{j}-a_{j-1}\right)}{q^{n}}
$$

PROOF OF SUFFICIENCY

- If $x=a_{m} /(q-1)$, then $b_{i}=a_{m}$ for all i so the algorithm provides an expansion.
- If $0 \leq x<a_{m} /(q-1)$, then there exists an index n such that $b_{n}<a_{m}$, and for each such n we have

$$
0 \leq x-\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}<\frac{\max _{1 \leq j \leq m}\left(a_{j}-a_{j-1}\right)}{q^{n}} .
$$

- If $b_{n}<a_{m}$ for infinitely many n, we see that $\left(b_{i}\right)$ is an expansion of x by letting $n \rightarrow \infty$ along these indices.

PROOF OF SUFFICIENCY

- If there were a last index n such that $b_{n}=a_{j}<a_{m}$, then

$$
\left(\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}\right)+\sum_{i=n+1}^{\infty} \frac{a_{m}}{q^{i}} \leq x<\left(\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}\right)+\frac{a_{j+1}-a_{j}}{q^{n}}
$$

whence

PROOF OF SUFFICIENCY

- If there were a last index n such that $b_{n}=a_{j}<a_{m}$, then

$$
\left(\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}\right)+\sum_{i=n+1}^{\infty} \frac{a_{m}}{q^{i}} \leq x<\left(\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}\right)+\frac{a_{j+1}-a_{j}}{q^{n}}
$$

whence

$$
\frac{a_{m}}{q^{n}(q-1)}<\frac{a_{j+1}-a_{j}}{q^{n}}
$$

PROOF OF SUFFICIENCY

- If there were a last index n such that $b_{n}=a_{j}<a_{m}$, then

$$
\left(\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}\right)+\sum_{i=n+1}^{\infty} \frac{a_{m}}{q^{i}} \leq x<\left(\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}\right)+\frac{a_{j+1}-a_{j}}{q^{n}}
$$

whence

$$
\frac{a_{m}}{q^{n}(q-1)}<\frac{a_{j+1}-a_{j}}{q^{n}}
$$

which violates the condition $\max _{1 \leq j \leq m}\left(a_{j}-a_{j-1}\right) \leq \frac{a_{m}}{q-1}$.

GREEDY MAP

Suppose that (A, q) satisfies the Pedicini condition with $a_{0}=0$. The greedy expansion can also be obtained by iterating the greedy map corresponding to $(A, q) T: J_{A, q} \rightarrow J_{A, q}$, defined by

$$
T(x)= \begin{cases}q x-a_{j}, & x \in D\left(a_{j}\right):=\left[\frac{a_{j}}{q}, \frac{a_{j+1}}{q}\right), \quad 0 \leq j<m, \\ q x-a_{m}, & x \in D\left(a_{m}\right):=\left[\frac{a_{m}}{q}, \frac{a_{m}}{q-1}\right] .\end{cases}
$$

GREEDY MAP

Suppose that (A, q) satisfies the Pedicini condition with $a_{0}=0$. The greedy expansion can also be obtained by iterating the greedy map corresponding to $(A, q) T: J_{A, q} \rightarrow J_{A, q}$, defined by

$$
T(x)= \begin{cases}q x-a_{j}, & x \in D\left(a_{j}\right):=\left[\frac{a_{j}}{q}, \frac{a_{j+1}}{q}\right), \quad 0 \leq j<m, \\ q x-a_{m}, & x \in D\left(a_{m}\right):=\left[\frac{a_{m}}{q}, \frac{a_{m}}{q-1}\right] .\end{cases}
$$

If $\left(b_{i}\right)$ is the greedy expansion of x in base q, then $b_{n}=j$ if and only if $T^{n-1}(x) \in D\left(a_{j}\right), n \geq 1, a_{j} \in A$.

NORMALIZED ERRORS OF AN EXPANSION

The normalized errors of an expansion $\left(c_{i}\right) \in A^{\mathbb{N}}$ of $x \in J_{A, q}$ are defined by

$$
\theta_{n}\left(\left(c_{i}\right)\right):=q^{n}\left(x-\sum_{i=1}^{n} \frac{c_{i}}{q^{i}}\right), \quad n \in \mathbb{N}
$$

NORMALIZED ERRORS OF AN EXPANSION

The normalized errors of an expansion $\left(c_{i}\right) \in A^{\mathbb{N}}$ of $x \in J_{A, q}$ are defined by

$$
\theta_{n}\left(\left(c_{i}\right)\right):=q^{n}\left(x-\sum_{i=1}^{n} \frac{c_{i}}{q^{i}}\right), \quad n \in \mathbb{N} .
$$

An expansion $\left(d_{i}\right)$ of x is optimal if $\theta_{n}\left(\left(d_{i}\right)\right) \leq \theta_{n}\left(\left(c_{i}\right)\right)$ for each n and each expansion $\left(c_{i}\right)$ of x.

NORMALIZED ERRORS OF AN EXPANSION

The normalized errors of an expansion $\left(c_{i}\right) \in A^{\mathbb{N}}$ of $x \in J_{A, q}$ are defined by

$$
\theta_{n}\left(\left(c_{i}\right)\right):=q^{n}\left(x-\sum_{i=1}^{n} \frac{c_{i}}{q^{i}}\right), \quad n \in \mathbb{N} .
$$

An expansion $\left(d_{i}\right)$ of x is optimal if $\theta_{n}\left(\left(d_{i}\right)\right) \leq \theta_{n}\left(\left(c_{i}\right)\right)$ for each n and each expansion (c_{i}) of x.

Note that only the greedy expansion can be optimal.

MAIN RESULT

Till further notice, $A=\{0,1\}$ and $q \in(1,2)$. Such couples (A, q) satisfy the Pedicini condition, so each $x \in[0,1 /(q-1)]$ has a (greedy) expansion.

MAIN RESULT

Till further notice, $A=\{0,1\}$ and $q \in(1,2)$. Such couples (A, q) satisfy the Pedicini condition, so each $x \in[0,1 /(q-1)]$ has a (greedy) expansion.

Let P be the set of bases $q \in(1,2)$ satisfying one of the equalities

$$
1=\frac{1}{q}+\cdots+\frac{1}{q^{n}}, \quad n \geq 2
$$

and let \mathcal{O}_{q} be the set of numbers with an optimal expansion in base q.

MAIN RESULT

Till further notice, $A=\{0,1\}$ and $q \in(1,2)$. Such couples (A, q) satisfy the Pedicini condition, so each $x \in[0,1 /(q-1)]$ has a (greedy) expansion.

Let P be the set of bases $q \in(1,2)$ satisfying one of the equalities

$$
1=\frac{1}{q}+\cdots+\frac{1}{q^{n}}, \quad n \geq 2
$$

and let \mathcal{O}_{q} be the set of numbers with an optimal expansion in base q.
Theorem

- If $q \in P$, then $\mathcal{O}_{q}=[0,1 /(q-1)]$.
- If $q \in(1,2) \backslash P$, then \mathcal{O}_{q} is nowhere dense and has Hausdorff dimension less than 1.

EXAMPLES

- Let \mathcal{U}_{q} be the set of of numbers in $[0,1 /(q-1)]$ with only one expansion in base q. Clearly, $\mathcal{U}_{q} \subseteq \mathcal{O}_{q}$.

EXAMPLES

- Let \mathcal{U}_{q} be the set of of numbers in $[0,1 /(q-1)]$ with only one expansion in base q. Clearly, $\mathcal{U}_{q} \subseteq \mathcal{O}_{q}$.
- It can be shown that \mathcal{O}_{q} always contains the closure of \mathcal{U}_{q}.

EXAMPLES

- Let \mathcal{U}_{q} be the set of of numbers in $[0,1 /(q-1)]$ with only one expansion in base q. Clearly, $\mathcal{U}_{q} \subseteq \mathcal{O}_{q}$.
- It can be shown that \mathcal{O}_{q} always contains the closure of \mathcal{U}_{q}.
- The greedy expansions $(0)^{n-1} 1(0)^{\infty}$ and $(1)^{n}(0)^{\infty}$ of the numbers

$$
\frac{1}{q^{n}} \quad \text { and } \quad \frac{1}{q}+\cdots+\frac{1}{q^{n}}
$$

respectively, are optimal in base q, for each $n \geq 1$.

EXAMPLES

Fix $q \in(1,2)$ and let k be the largest positive integer such that

$$
\frac{1}{q}+\cdots+\frac{1}{q^{k}}<1 .
$$

EXAMPLES

Fix $q \in(1,2)$ and let k be the largest positive integer such that

$$
\frac{1}{q}+\cdots+\frac{1}{q^{k}}<1 .
$$

Define the numbers $x_{n}(n \geq 1)$ by

$$
x_{n}:=\frac{1}{q}+\cdots+\frac{1}{q^{n}}+\frac{1}{q^{n+k+1}} .
$$

EXAMPLES

Fix $q \in(1,2)$ and let k be the largest positive integer such that

$$
\frac{1}{q}+\cdots+\frac{1}{q^{k}}<1 .
$$

Define the numbers $x_{n}(n \geq 1)$ by

$$
x_{n}:=\frac{1}{q}+\cdots+\frac{1}{q^{n}}+\frac{1}{q^{n+k+1}} .
$$

These numbers belong to \mathcal{O}_{q}, because

$$
\frac{1}{q^{n+1}}+\cdots+\frac{1}{q^{n+k}}<\frac{1}{q^{n}} .
$$

EXAMPLES

Fix $q \in(1,2)$ and let k be the largest positive integer such that

$$
\frac{1}{q}+\cdots+\frac{1}{q^{k}}<1 .
$$

Define the numbers $x_{n}(n \geq 1)$ by

$$
x_{n}:=\frac{1}{q}+\cdots+\frac{1}{q^{n}}+\frac{1}{q^{n+k+1}} .
$$

These numbers belong to \mathcal{O}_{q}, because

$$
\frac{1}{q^{n+1}}+\cdots+\frac{1}{q^{n+k}}<\frac{1}{q^{n}}
$$

The maximality of k implies that $x_{n} \notin \overline{\mathcal{U}_{q}}$. Hence $\mathcal{O}_{q} \backslash \overline{\mathcal{U}_{q}}$ is infinite for each $q \in(1,2)$.

NONEXAMPLES

Let $G:=(1+\sqrt{5}) / 2$ be the Golden ratio and suppose that $1<q<G$.

NONEXAMPLES

Let $G:=(1+\sqrt{5}) / 2$ be the Golden ratio and suppose that $1<q<G$.
Consider the number $x:=q^{-2}+q^{-3}$.

NONEXAMPLES

Let $G:=(1+\sqrt{5}) / 2$ be the Golden ratio and suppose that $1<q<G$.
Consider the number $x:=q^{-2}+q^{-3}$.
The sequence $\left(c_{i}\right)=011(0)^{\infty}$ is clearly an expansion of x.

NONEXAMPLES

Let $G:=(1+\sqrt{5}) / 2$ be the Golden ratio and suppose that $1<q<G$.
Consider the number $x:=q^{-2}+q^{-3}$.
The sequence $\left(c_{i}\right)=011(0)^{\infty}$ is clearly an expansion of x.
The greedy expansion $\left(b_{i}\right)$ of x in base q starts, however, with 100, since $q^{-1}<q^{-2}+q^{-3}$.

NONEXAMPLES

Let $G:=(1+\sqrt{5}) / 2$ be the Golden ratio and suppose that $1<q<G$.
Consider the number $x:=q^{-2}+q^{-3}$.
The sequence $\left(c_{i}\right)=011(0)^{\infty}$ is clearly an expansion of x.
The greedy expansion $\left(b_{i}\right)$ of x in base q starts, however, with 100, since $q^{-1}<q^{-2}+q^{-3}$.

Hence $\theta_{3}\left(\left(c_{i}\right)\right)=0<\theta_{3}\left(\left(b_{i}\right)\right)$.

NONEXAMPLES

Let $G:=(1+\sqrt{5}) / 2$ be the Golden ratio and suppose that $1<q<G$.
Consider the number $x:=q^{-2}+q^{-3}$.
The sequence $\left(c_{i}\right)=011(0)^{\infty}$ is clearly an expansion of x.
The greedy expansion $\left(b_{i}\right)$ of x in base q starts, however, with 100, since $q^{-1}<q^{-2}+q^{-3}$.

Hence $\theta_{3}\left(\left(c_{i}\right)\right)=0<\theta_{3}\left(\left(b_{i}\right)\right)$.
The greedy expansion of x is thus not optimal.

NONEXAMPLES

If q lies between two subsequent values of P, i.e., if

NONEXAMPLES

If q lies between two subsequent values of P, i.e., if
$\frac{1}{q}+\cdots+\frac{1}{q^{n}}<1<\frac{1}{q}+\cdots+\frac{1}{q^{n}}+\frac{1}{q^{n+1}}$ for some n, then

NONEXAMPLES

If q lies between two subsequent values of P, i.e., if

$$
\begin{aligned}
& \frac{1}{q}+\cdots+\frac{1}{q^{n}}<1<\frac{1}{q}+\cdots+\frac{1}{q^{n}}+\frac{1}{q^{n+1}} \text { for some } n \text {, then } \\
& \frac{1}{q}<\frac{1}{q^{2}}+\cdots+\frac{1}{q^{n+2}}:=L<R:=\frac{1}{q}+\frac{1}{q^{n+2}}
\end{aligned}
$$

NONEXAMPLES

If q lies between two subsequent values of P, i.e., if

$$
\begin{aligned}
& \frac{1}{q}+\cdots+\frac{1}{q^{n}}<1<\frac{1}{q}+\cdots+\frac{1}{q^{n}}+\frac{1}{q^{n+1}} \text { for some } n \text {, then } \\
& \frac{1}{q}<\frac{1}{q^{2}}+\cdots+\frac{1}{q^{n+2}}:=L<R:=\frac{1}{q}+\frac{1}{q^{n+2}}
\end{aligned}
$$

The greedy expansion $\left(b_{i}\right)$ of a number $x \in(L, R)$ starts with $1(0)^{n+1}$ but x has an expansion $\left(c_{i}\right)$ starting with $0(1)^{n+1}$, whence

NONEXAMPLES

If q lies between two subsequent values of P, i.e., if

$$
\begin{aligned}
& \frac{1}{q}+\cdots+\frac{1}{q^{n}}<1<\frac{1}{q}+\cdots+\frac{1}{q^{n}}+\frac{1}{q^{n+1}} \text { for some } n \text {, then } \\
& \frac{1}{q}<\frac{1}{q^{2}}+\cdots+\frac{1}{q^{n+2}}:=L<R:=\frac{1}{q}+\frac{1}{q^{n+2}}
\end{aligned}
$$

The greedy expansion $\left(b_{i}\right)$ of a number $x \in(L, R)$ starts with $1(0)^{n+1}$ but x has an expansion $\left(c_{i}\right)$ starting with $0(1)^{n+1}$, whence
$\theta_{n+2}\left(\left(c_{i}\right)\right)<\theta_{n+2}\left(\left(b_{i}\right)\right)$, so $\left(b_{i}\right)$ is not optimal.

GREEDY MAP T_{k}

Each $x \in[0,1 /(q-1)]$ has an expansion in base q, so each such x has an expansion in base $q^{k} \quad(k \geq 1)$ with respect to the alphabet

$$
A_{k}:=\left\{c_{1} q^{k-1}+c_{2} q^{k-2}+\cdots+c_{k-1} q+c_{k} \mid c_{1}, \ldots, c_{k} \in\{0,1\}\right\}
$$

GREEDY MAP T_{k}

Each $x \in[0,1 /(q-1)]$ has an expansion in base q, so each such x has an expansion in base $q^{k} \quad(k \geq 1)$ with respect to the alphabet

$$
A_{k}:=\left\{c_{1} q^{k-1}+c_{2} q^{k-2}+\cdots+c_{k-1} q+c_{k} \mid c_{1}, \ldots, c_{k} \in\{0,1\}\right\}
$$

This implies that each $x \in J_{A, q}=J_{A_{k}, q^{k}}$ has a greedy expansion with respect to $\left(A_{k}, q^{k}\right)$, sometimes called the k-block greedy expansion.

GREEDY MAP T_{k}

Each $x \in[0,1 /(q-1)]$ has an expansion in base q, so each such x has an expansion in base $q^{k} \quad(k \geq 1)$ with respect to the alphabet

$$
A_{k}:=\left\{c_{1} q^{k-1}+c_{2} q^{k-2}+\cdots+c_{k-1} q+c_{k} \mid c_{1}, \ldots, c_{k} \in\{0,1\}\right\}
$$

This implies that each $x \in J_{A, q}=J_{A_{k}, q^{k}}$ has a greedy expansion with respect to $\left(A_{k}, q^{k}\right)$, sometimes called the k-block greedy expansion.

We sometimes refer to the greedy map T_{k} corresponding to $\left(A_{k}, q^{k}\right)$ as the k-block greedy map. The k-fold greedy map T^{k} is just the k-fold composition of the ordinary greedy map T.

COMPARING T_{k} WITH T^{k}

Note: The first digit of the greedy expansion of x with respect to $\left(A_{k}, q^{k}\right)$ is not necessarily $b_{1} q^{k-1}+\cdots b_{k-1} q+b_{k}$ if $\left(b_{i}\right)$ is the greedy expansion of x with respect to (A, q) :

Example

If $1<q<G$ and $x=q^{-2}+q^{-3}$, then $q^{-1}<q^{-2}+q^{-3}$ whence $T_{3}(x)=0<T^{3}(x)=q^{3}\left(x-q^{-1}\right)$.

COMPARING T_{k} WITH T^{k}

Note: The first digit of the greedy expansion of x with respect to $\left(A_{k}, q^{k}\right)$ is not necessarily $b_{1} q^{k-1}+\cdots b_{k-1} q+b_{k}$ if $\left(b_{i}\right)$ is the greedy expansion of x with respect to (A, q) :

Example

If $1<q<G$ and $x=q^{-2}+q^{-3}$, then $q^{-1}<q^{-2}+q^{-3}$ whence $T_{3}(x)=0<T^{3}(x)=q^{3}\left(x-q^{-1}\right)$.

Proposition

- For all $x \in[0,1 /(q-1)]$ and $k \geq 1$ we have $T_{k}(x) \leq T^{k}(x)$.
- $T_{k}(x)=T^{k}(x)$ for each $k \geq 1$ if and only if x has an optimal expansion.

CRITERIA FOR $T_{k}=T^{k}$

Given $k \geq 1$, let $S_{q, k}$ be the set of all blocks $\left(c_{1}, \ldots, c_{k}\right) \in\{0,1\}^{k}=A^{k}$ such that

$$
\sum_{i=1}^{k} \frac{d_{i}}{q^{i}} \neq \sum_{i=1}^{k} \frac{c_{i}}{q^{i}}
$$

for each $\left(d_{1}, \ldots, d_{k}\right) \in A^{k}$ satisfying $\left(d_{1}, \ldots, d_{k}\right)>\left(c_{1}, \ldots, c_{k}\right)$.

CRITERIA FOR $T_{k}=T^{k}$

Given $k \geq 1$, let $S_{q, k}$ be the set of all blocks $\left(c_{1}, \ldots, c_{k}\right) \in\{0,1\}^{k}=A^{k}$ such that

$$
\sum_{i=1}^{x} d \sum_{i=1}^{n} \frac{d}{d}
$$

for each $\left(d_{1}, \ldots, d_{k}\right) \in A^{k}$ satisfying $\left(d_{1}, \ldots, d_{k}\right)>\left(c_{1}, \ldots, c_{k}\right)$.
Note that $S_{q, k} \supseteq\left\{\left(b_{1}(x), \ldots, b_{k}(x)\right) \mid x \in[0,1 /(q-1)]\right\}$, but in general we have no equality here:

CRITERIA FOR $T_{k}=T^{k}$

Given $k \geq 1$, let $S_{q, k}$ be the set of all blocks $\left(c_{1}, \ldots, c_{k}\right) \in\{0,1\}^{k}=A^{k}$ such that

$$
\sum_{i=1}^{k} \frac{d_{i}}{q^{i}} \neq \sum_{i=1}^{k} \frac{c_{i}}{q^{i}}
$$

for each $\left(d_{1}, \ldots, d_{k}\right) \in A^{k}$ satisfying $\left(d_{1}, \ldots, d_{k}\right)>\left(c_{1}, \ldots, c_{k}\right)$.
Note that $S_{q, k} \supseteq\left\{\left(b_{1}(x), \ldots, b_{k}(x)\right) \mid x \in[0,1 /(q-1)]\right\}$, but in general we have no equality here:

Example

If $1<q<G$, then $q^{-1}<q^{-2}+q^{-3}$, hence 011 belongs to $S_{q, 3}$ but no greedy expansion starts with 011.

CRITERIA FOR $T_{k}=T^{k}$

Let the injective map $f: S_{q, k} \rightarrow[0,1 /(q-1)]$ be given by

$$
f\left(\left(c_{1}, \ldots, c_{k}\right)\right)=\frac{c_{1}}{q}+\cdots+\frac{c_{k}}{q^{k}}, \quad\left(c_{1}, \ldots, c_{k}\right) \in S_{q, k}
$$

CRITERIA FOR $T_{k}=T^{k}$

Let the injective map $f: S_{q, k} \rightarrow[0,1 /(q-1)]$ be given by

$$
f\left(\left(c_{1}, \ldots, c_{k}\right)\right)=\frac{c_{1}}{q}+\cdots+\frac{c_{k}}{q^{k}}, \quad\left(c_{1}, \ldots, c_{k}\right) \in S_{q, k} .
$$

Proposition

The following statements are equivalent.

- The map f is increasing.

CRITERIA FOR $T_{k}=T^{k}$

Let the injective map $f: S_{q, k} \rightarrow[0,1 /(q-1)]$ be given by

$$
f\left(\left(c_{1}, \ldots, c_{k}\right)\right)=\frac{c_{1}}{q}+\cdots+\frac{c_{k}}{q^{k}}, \quad\left(c_{1}, \ldots, c_{k}\right) \in S_{q, k} .
$$

Proposition

The following statements are equivalent.

- The map f is increasing.
- $T_{k}=T^{k}$.

CRITERIA FOR $T_{k}=T^{k}$

Let the injective map $f: S_{q, k} \rightarrow[0,1 /(q-1)]$ be given by

$$
f\left(\left(c_{1}, \ldots, c_{k}\right)\right)=\frac{c_{1}}{q}+\cdots+\frac{c_{k}}{q^{k}}, \quad\left(c_{1}, \ldots, c_{k}\right) \in S_{q, k}
$$

Proposition

The following statements are equivalent.

- The map f is increasing.
- $T_{k}=T^{k}$.
- $S_{q, k}=\left\{\left(b_{1}(x), \ldots, b_{k}(x)\right) \mid x \in[0,1 /(q-1)]\right\}$.

OPTIMALITY IF THE BASE BELONGS TO P

First we show that if $1=q^{-1}+\cdots+q^{-n}$ for some n, then the greedy expansion of each $x \in[0,1 /(q-1)]$ is optimal.

OPTIMALITY IF THE BASE BELONGS TO P

First we show that if $1=q^{-1}+\cdots+q^{-n}$ for some n, then the greedy expansion of each $x \in[0,1 /(q-1)]$ is optimal.

Suppose that $\left(c_{1}, \ldots, c_{k}\right)$ and $\left(d_{1}, \ldots, d_{k}\right)$ both belong to $S_{q, k}$ and that $\left(c_{1}, \ldots, c_{k}\right)>\left(d_{1}, \ldots, d_{k}\right)$. We must show that

$$
\sum_{i=1}^{k} \frac{c_{i}}{q^{i}}>\sum_{i=1}^{k} \frac{d_{i}}{q^{i}} .
$$

OPTIMALITY IF THE BASE BELONGS TO P

First we show that if $1=q^{-1}+\cdots+q^{-n}$ for some n, then the greedy expansion of each $x \in[0,1 /(q-1)]$ is optimal.

Suppose that $\left(c_{1}, \ldots, c_{k}\right)$ and $\left(d_{1}, \ldots, d_{k}\right)$ both belong to $S_{q, k}$ and that $\left(c_{1}, \ldots, c_{k}\right)>\left(d_{1}, \ldots, d_{k}\right)$. We must show that

$$
\sum_{i=1}^{k} \frac{c_{i}}{q^{i}}>\sum_{i=1}^{k} \frac{d_{i}}{q^{i}}
$$

Let j be the first index for which $c_{j}=1>d_{j}=0$. It is enough to show that

$$
\sum_{i=1}^{k-j} \frac{d_{j+i}}{q^{i}}<1
$$

OPTIMALITY IF THE BASE BELONGS TO P

Blocks in $S_{q, k}$ cannot contain the subblock $0(1)^{n}$ because the sum corresponding to a block $0(1)^{n}$ equals the sum corresponding to the lexicographically larger block $1(0)^{n}$.

OPTIMALITY IF THE BASE BELONGS TO P

Blocks in $S_{q, k}$ cannot contain the subblock $0(1)^{n}$ because the sum corresponding to a block $0(1)^{n}$ equals the sum corresponding to the lexicographically larger block $1(0)^{n}$.

Since $d_{j}=0,\left(d_{j+1}, \ldots, d_{k}\right)$ cannot contain the block $(1)^{n}$, whence

OPTIMALITY IF THE BASE BELONGS TO P

Blocks in $S_{q, k}$ cannot contain the subblock $0(1)^{n}$ because the sum corresponding to a block $0(1)^{n}$ equals the sum corresponding to the lexicographically larger block $1(0)^{n}$.

Since $d_{j}=0,\left(d_{j+1}, \ldots, d_{k}\right)$ cannot contain the block $(1)^{n}$, whence

$$
\sum_{i=1}^{k-j} \frac{d_{j+i}}{q^{i}}<\sum_{k=0}^{\infty}\left(\frac{1}{q^{n}}\right)^{k}\left(\frac{1}{q}+\cdots+\frac{1}{q^{n-1}}\right)=1 .
$$

OPTIMALITY IF THE BASE BELONGS TO P

Blocks in $S_{q, k}$ cannot contain the subblock $0(1)^{n}$ because the sum corresponding to a block $0(1)^{n}$ equals the sum corresponding to the lexicographically larger block $1(0)^{n}$.

Since $d_{j}=0,\left(d_{j+1}, \ldots, d_{k}\right)$ cannot contain the block $(1)^{n}$, whence

$$
\sum_{i=1}^{k-j} \frac{d_{j+i}}{q^{i}}<\sum_{k=0}^{\infty}\left(\frac{1}{q^{n}}\right)^{k}\left(\frac{1}{q}+\cdots+\frac{1}{q^{n-1}}\right)=1 .
$$

We may conclude that $T_{k}=T^{k}$ for each $k \geq 1$; therefore each $x \in[0,1 /(q-1)]$ has an optimal expansion.

OPTIMALITY IF THE BASE BELONGS TO $(1,2) \backslash P$

For bases q not belonging to P, we have already constructed numbers with no optimal expansion in base q.

OPTIMALITY IF THE BASE BELONGS TO $(1,2) \backslash P$

For bases q not belonging to P, we have already constructed numbers with no optimal expansion in base q.

More precisely, we saw that if $1=q_{n}^{-1}+\cdots q_{n}^{-n}(n \in \mathbb{N})$ and $q \in\left(q_{n}, q_{n+1}\right)$, then no number belonging to the interval

$$
\left(\frac{1}{q^{2}}+\cdots+\frac{1}{q^{n+2}}, \frac{1}{q}+\frac{1}{q^{n+2}}\right)
$$

has an optimal expansion in base q.

OPTIMALITY IF THE BASE BELONGS TO $(1,2) \backslash P$

For bases q not belonging to P, we have already constructed numbers with no optimal expansion in base q.

More precisely, we saw that if $1=q_{n}^{-1}+\cdots q_{n}^{-n}(n \in \mathbb{N})$ and $q \in\left(q_{n}, q_{n+1}\right)$, then no number belonging to the interval

$$
\left(\frac{1}{q^{2}}+\cdots+\frac{1}{q^{n+2}}, \frac{1}{q}+\frac{1}{q^{n+2}}\right)
$$

has an optimal expansion in base q.
This interval is contained in $[0,1)$, unless q is close to 1 .

OPTIMALITY IF THE BASE BELONGS TO $(1,2) \backslash P$

For bases q not belonging to P, we have already constructed numbers with no optimal expansion in base q.

More precisely, we saw that if $1=q_{n}^{-1}+\cdots q_{n}^{-n}(n \in \mathbb{N})$ and $q \in\left(q_{n}, q_{n+1}\right)$, then no number belonging to the interval

$$
\left(\frac{1}{q^{2}}+\cdots+\frac{1}{q^{n+2}}, \frac{1}{q}+\frac{1}{q^{n+2}}\right)
$$

has an optimal expansion in base q.
This interval is contained in $[0,1)$, unless q is close to 1 .
For each $q \in(1,2) \backslash P$ it is possible to construct an open subinterval of $[0,1)$ that does not meet \mathcal{O}_{q}.

OPTIMALITY IF THE BASE BELONGS TO $(1,2) \backslash P$

Let V be such an open interval. It is not hard to prove that the set

$$
W:=\left\{x \in[0,1 /(q-1)] \mid T^{k}(x) \notin V \text { for all } k \geq 0\right\}
$$

has Hausdorff dimension less than 1.

OPTIMALITY IF THE BASE BELONGS TO $(1,2) \backslash P$

Let V be such an open interval. It is not hard to prove that the set

$$
W:=\left\{x \in[0,1 /(q-1)] \mid T^{k}(x) \notin V \text { for all } k \geq 0\right\}
$$

has Hausdorff dimension less than 1.
Since all tails of an optimal expansion are optimal, this implies that \mathcal{O}_{q} has Hausdorff dimension less than 1.

OPTIMALITY IF THE BASE BELONGS TO $(1,2) \backslash P$

Let V be such an open interval. It is not hard to prove that the set

$$
W:=\left\{x \in[0,1 /(q-1)] \mid T^{k}(x) \notin V \text { for all } k \geq 0\right\}
$$

has Hausdorff dimension less than 1.
Since all tails of an optimal expansion are optimal, this implies that \mathcal{O}_{q} has Hausdorff dimension less than 1.
Finally, using elementary properties of greedy expansions, one may show that numbers belonging to $\overline{\mathcal{O}_{q}} \backslash \mathcal{O}_{q}$ (if any) must have a finite expansion.

OPTIMALITY IF THE BASE BELONGS TO $(1,2) \backslash P$

Let V be such an open interval. It is not hard to prove that the set

$$
W:=\left\{x \in[0,1 /(q-1)] \mid T^{k}(x) \notin V \text { for all } k \geq 0\right\}
$$

has Hausdorff dimension less than 1.
Since all tails of an optimal expansion are optimal, this implies that \mathcal{O}_{q} has Hausdorff dimension less than 1.
Finally, using elementary properties of greedy expansions, one may show that numbers belonging to $\overline{\mathcal{O}_{q}} \backslash \mathcal{O}_{q}$ (if any) must have a finite expansion.
Hence $\overline{\mathcal{O}_{q}} \backslash \mathcal{O}_{q}$ is (at most) countable which implies in particular that $\overline{\mathcal{O}_{q}}$ is also a null set and therefore has no interior points.

OPTIMALITY IF THE BASE BELONGS TO $(1,2) \backslash P$

Let V be such an open interval. It is not hard to prove that the set

$$
W:=\left\{x \in[0,1 /(q-1)] \mid T^{k}(x) \notin V \text { for all } k \geq 0\right\}
$$

has Hausdorff dimension less than 1.
Since all tails of an optimal expansion are optimal, this implies that \mathcal{O}_{q} has Hausdorff dimension less than 1.
Finally, using elementary properties of greedy expansions, one may show that numbers belonging to $\overline{\mathcal{O}_{q}} \backslash \mathcal{O}_{q}$ (if any) must have a finite expansion.
Hence $\overline{\mathcal{O}_{q}} \backslash \mathcal{O}_{q}$ is (at most) countable which implies in particular that $\overline{\mathcal{O}_{q}}$ is also a null set and therefore has no interior points.
We may conclude that \mathcal{O}_{q} is nowhere dense and has Hausdorff dimension less than one if $q \in(1,2) \backslash P$.

GENERALIZATION

For a positive integer m, let $A=\{0,1, \ldots, m\}$ and let $q \in(m, m+1)$. Note that the couple (A, q) satisfies the Pedicini condition. Let P_{m} be the set consisting of bases $q \in(m, m+1)$ which satisfy one of the equalities

$$
1=\frac{m}{q}+\cdots+\frac{m}{q^{n}}+\frac{p}{q^{n+1}}, \quad n \in \mathbb{N} \text { and } p \in\{1, \ldots, m\}
$$

GENERALIZATION

For a positive integer m, let $A=\{0,1, \ldots, m\}$ and let $q \in(m, m+1)$. Note that the couple (A, q) satisfies the Pedicini condition. Let P_{m} be the set consisting of bases $q \in(m, m+1)$ which satisfy one of the equalities

$$
1=\frac{m}{q}+\cdots+\frac{m}{q^{n}}+\frac{p}{q^{n+1}}, \quad n \in \mathbb{N} \text { and } p \in\{1, \ldots, m\}
$$

Theorem

- If $q \in P_{m}$, then $\mathcal{O}_{q}=[0, m /(q-1)]$.
- If $q \in(m, m+1) \backslash P_{m}$, then \mathcal{O}_{q} is nowhere dense and has Hausdorff dimension less than 1.

GENERALIZATION

For a positive integer m, let $A=\{0,1, \ldots, m\}$ and let $q \in(m, m+1)$. Note that the couple (A, q) satisfies the Pedicini condition. Let P_{m} be the set consisting of bases $q \in(m, m+1)$ which satisfy one of the equalities

$$
1=\frac{m}{q}+\cdots+\frac{m}{q^{n}}+\frac{p}{q^{n+1}}, \quad n \in \mathbb{N} \text { and } p \in\{1, \ldots, m\}
$$

Theorem

- If $q \in P_{m}$, then $\mathcal{O}_{q}=[0, m /(q-1)]$.
- If $q \in(m, m+1) \backslash P_{m}$, then \mathcal{O}_{q} is nowhere dense and has Hausdorff dimension less than 1.

Note: Numbers belonging to $P=\bigcup_{m} P_{m}$ are sometimes called confluent Parry numbers.

THE MEASURES μ_{k} AND THEIR RESPECTIVE DENSITIES

Let $A=\{0,1, \ldots, m\}$ and $q \in(m, m+1)$.

THE MEASURES μ_{k} AND THEIR RESPECTIVE DENSITIES

Let $A=\{0,1, \ldots, m\}$ and $q \in(m, m+1)$.
(Rényi, Parry) The greedy map $T=T_{1}$ corresponding to (A, q) is ergodic with respect to a unique normalized absolutely continuous invariant measure (a.c.i.m) μ_{1}. The Parry density h_{q} of μ_{1} is given by

$$
h_{q}(x)=\frac{1}{F(q)} \sum_{n=0}^{\infty} \frac{1}{q^{n}} \cdot 1_{\left[0, T^{n}(1)\right)}(x)
$$

where $F(q)$ is a normalizing constant.

THE MEASURES μ_{k} AND THEIR RESPECTIVE DENSITIES

Let $A=\{0,1, \ldots, m\}$ and $q \in(m, m+1)$.
(Rényi, Parry) The greedy map $T=T_{1}$ corresponding to (A, q) is ergodic with respect to a unique normalized absolutely continuous invariant measure (a.c.i.m) μ_{1}. The Parry density h_{q} of μ_{1} is given by

$$
h_{q}(x)=\frac{1}{F(q)} \sum_{n=0}^{\infty} \frac{1}{q^{n}} \cdot 1_{\left[0, T^{n}(1)\right)}(x)
$$

where $F(q)$ is a normalizing constant. (Lasota, Yorke) For each positive integer k, the greedy map T_{k} corresponding to $\left(A_{k}, q^{k}\right)$ is also ergodic with respect to a unique normalized a.c.i.m μ_{k}, as follows from a more general theorem on piecewise lineair expanding maps.

THE MEASURES μ_{k} AND THEIR RESPECTIVE DENSITIES

Proposition

$q \in P$ if and only if $\mu_{1}=\mu_{k}$ for all $k \geq 1$.

THE MEASURES μ_{k} AND THEIR RESPECTIVE DENSITIES

Proposition

$q \in P$ if and only if $\mu_{1}=\mu_{k}$ for all $k \geq 1$.
Sketch of proof: If $q \in P$ and $k \geq 1$, then μ_{1} is also an a.c.i.m for T_{k} because $T_{k}=T^{k}$. Since the a.c.i.m is unique, it follows that $\mu_{1}=\mu_{k}$. If $q \notin P$, we have already seen that $T_{k}<T^{k}$ for some k on some open subinterval of $[0,1)$. Arguing by contradiction, one easily derives that $\mu_{1} \neq \mu_{k}$ for this k.

THE MEASURES μ_{k} AND THEIR RESPECTIVE DENSITIES

Proposition

$q \in P$ if and only if $\mu_{1}=\mu_{k}$ for all $k \geq 1$.
Sketch of proof: If $q \in P$ and $k \geq 1$, then μ_{1} is also an a.c.i.m for T_{k} because $T_{k}=T^{k}$. Since the a.c.i.m is unique, it follows that $\mu_{1}=\mu_{k}$. If $q \notin P$, we have already seen that $T_{k}<T^{k}$ for some k on some open subinterval of $[0,1)$. Arguing by contradiction, one easily derives that $\mu_{1} \neq \mu_{k}$ for this k.

Open problem: Determine an explicit formula for the density of μ_{k} if $q \notin P$.

TOPOLOGY OF \mathcal{O}_{q}

Regarding the topology of \mathcal{O}_{q}, almost nothing is known if $q \notin P$.

TOPOLOGY OF \mathcal{O}_{q}

Regarding the topology of \mathcal{O}_{q}, almost nothing is known if $q \notin P$.
Let us address some obvious questions:

TOPOLOGY OF \mathcal{O}_{q}

Regarding the topology of \mathcal{O}_{q}, almost nothing is known if $q \notin P$.
Let us address some obvious questions:

- For which bases q is the set \mathcal{O}_{q} (at most) countable?

TOPOLOGY OF \mathcal{O}_{q}

Regarding the topology of \mathcal{O}_{q}, almost nothing is known if $q \notin P$.
Let us address some obvious questions:

- For which bases q is the set \mathcal{O}_{q} (at most) countable?
- For which bases q is the set $\mathcal{O}_{q} \backslash \mathcal{U}_{q}$ (at most) countable?

TOPOLOGY OF \mathcal{O}_{q}

Regarding the topology of \mathcal{O}_{q}, almost nothing is known if $q \notin P$.
Let us address some obvious questions:

- For which bases q is the set \mathcal{O}_{q} (at most) countable?
- For which bases q is the set $\mathcal{O}_{q} \backslash \mathcal{U}_{q}$ (at most) countable?
- For which bases q is the set \mathcal{O}_{q} closed?

TOPOLOGY OF \mathcal{O}_{q}

Regarding the topology of \mathcal{O}_{q}, almost nothing is known if $q \notin P$.
Let us address some obvious questions:

- For which bases q is the set \mathcal{O}_{q} (at most) countable?
- For which bases q is the set $\mathcal{O}_{q} \backslash \mathcal{U}_{q}$ (at most) countable?
- For which bases q is the set \mathcal{O}_{q} closed?
- For which bases q is the set \mathcal{O}_{q} a Cantor set?

TOPOLOGY OF \mathcal{O}_{q}

Regarding the topology of \mathcal{O}_{q}, almost nothing is known if $q \notin P$.
Let us address some obvious questions:

- For which bases q is the set \mathcal{O}_{q} (at most) countable?
- For which bases q is the set $\mathcal{O}_{q} \backslash \mathcal{U}_{q}$ (at most) countable?
- For which bases q is the set \mathcal{O}_{q} closed?
- For which bases q is the set \mathcal{O}_{q} a Cantor set?

Proposition

The set \mathcal{O}_{q} is closed from above: if $x \notin \mathcal{O}_{q}$, then there exists a number $\delta=\delta(x)>0$ so that $[x, x+\delta) \cap \mathcal{O}_{q}=\varnothing$.

TOPOLOGY OF \mathcal{O}_{q}

Proof.

If the greedy expansion $\left(b_{i}\right)$ of x is not optimal, then there exists an expansion $\left(c_{i}\right)$ of x and a number $n \geq 1$ such that

$$
\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}<\sum_{i=1}^{n} \frac{c_{i}}{q^{i}} \leq x
$$

TOPOLOGY OF \mathcal{O}_{q}

Proof.

If the greedy expansion $\left(b_{i}\right)$ of x is not optimal, then there exists an expansion $\left(c_{i}\right)$ of x and a number $n \geq 1$ such that

$$
\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}<\sum_{i=1}^{n} \frac{c_{i}}{q^{i}} \leq x
$$

Hence x belongs to the interval

$$
E:=\left[\sum_{i=1}^{n} \frac{c_{i}}{q^{i}}, \sum_{i=1}^{n} \frac{c_{i}}{q^{i}}+\sum_{i=n+1}^{\infty} \frac{m}{q^{i}}\right)
$$

TOPOLOGY OF \mathcal{O}_{q}

Proof.

If the greedy expansion $\left(b_{i}\right)$ of x is not optimal, then there exists an expansion $\left(c_{i}\right)$ of x and a number $n \geq 1$ such that

$$
\sum_{i=1}^{n} \frac{b_{i}}{q^{i}}<\sum_{i=1}^{n} \frac{c_{i}}{q^{i}} \leq x
$$

Hence x belongs to the interval

$$
E:=\left[\sum_{i=1}^{n} \frac{c_{i}}{q^{i}}, \sum_{i=1}^{n} \frac{c_{i}}{q^{i}}+\sum_{i=n+1}^{\infty} \frac{m}{q^{i}}\right)
$$

The map $x \mapsto\left(b_{i}\right)$ is continuous from the right, hence there exists an interval $[x, x+\delta)$ contained in E so that each number in $[x, x+\delta)$ has an expansion starting with $b_{1} \ldots b_{n}$ and one starting with $c_{1} \ldots c_{n}$.

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447
- M. de Vries, V. Komornik, Unique expansions of real numbers, Adv. Math. 221 (2009) 390-427

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447
- M. de Vries, V. Komornik, Unique expansions of real numbers, Adv. Math. 221 (2009) 390-427
- A. Lasota, J.A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982) 375-384

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447
- M. de Vries, V. Komornik, Unique expansions of real numbers, Adv. Math. 221 (2009) 390-427
- A. Lasota, J.A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982) 375-384
- W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447
- M. de Vries, V. Komornik, Unique expansions of real numbers, Adv. Math. 221 (2009) 390-427
- A. Lasota, J.A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982) 375-384
- W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416
- M. Pedicini, Greedy expansions and sets with deleted digits, Theoret. Comput. Sci 332 (2005), 313-336

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447
- M. de Vries, V. Komornik, Unique expansions of real numbers, Adv. Math. 221 (2009) 390-427
- A. Lasota, J.A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982) 375-384
- W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416
- M. Pedicini, Greedy expansions and sets with deleted digits, Theoret. Comput. Sci 332 (2005), 313-336
- A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493

