Some properties of optimal expansions in non-integer bases Based on joint work with K. Dajani, V. Komornik and P. Loreti

Martijn de Vries

Pisa, December 11th, 2018

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Martijn de Vries

Optimal expansions

Pisa, December 11th, 2018 2/30

2

イロト イヨト イヨト イヨト

2 Expansions with respect to a given finite alphabet

Martijn de Vries

э

イロト イポト イヨト イヨト

Summary

- 2 Expansions with respect to a given finite alphabet
- Optimal expansions

3

イロト イポト イヨト イヨト

Summary

- 2 Expansions with respect to a given finite alphabet
- Optimal expansions
- Sketch of proof

3

イロト イポト イヨト イヨト

Summary

- 2 Expansions with respect to a given finite alphabet
- Optimal expansions
- 4 Sketch of proof
- 5 Open problems

3

Summary

- 2 Expansions with respect to a given finite alphabet
- Optimal expansions
- 4 Sketch of proof
- 5 Open problems
- 6 References

Given a base $q \in (1, 2]$ and a real number $x \in J_q := [0, 1/(q-1)]$, we call a sequence $(c_i) = c_1 c_2 \dots$ of zeros and ones an *optimal* expansion of x if

3

Given a base $q \in (1, 2]$ and a real number $x \in J_q := [0, 1/(q-1)]$, we call a sequence $(c_i) = c_1 c_2 \dots$ of zeros and ones an *optimal* expansion of x if

• (c_i) is an expansion of x: $x = \sum_{i=1}^{\infty} c_i q^{-i}$ and if

Given a base $q \in (1, 2]$ and a real number $x \in J_q := [0, 1/(q-1)]$, we call a sequence $(c_i) = c_1 c_2 \dots$ of zeros and ones an *optimal* expansion of x if

- (c_i) is an expansion of x: $x = \sum_{i=1}^{\infty} c_i q^{-i}$ and if
- among all possible expansions of *x*, the partial sums
 ∑ⁿ_{i=1} c_iq⁻ⁱ, n = 1, 2, ... generated by the expansion (c_i) are
 uniformly closest to *x*, i.e.,

Given a base $q \in (1, 2]$ and a real number $x \in J_q := [0, 1/(q-1)]$, we call a sequence $(c_i) = c_1 c_2 \dots$ of zeros and ones an *optimal* expansion of x if

- (c_i) is an expansion of x: $x = \sum_{i=1}^{\infty} c_i q^{-i}$ and if
- among all possible expansions of *x*, the partial sums
 ∑ⁿ_{i=1} c_iq⁻ⁱ, n = 1, 2, ... generated by the expansion (c_i) are
 uniformly closest to *x*, i.e.,

 $\sum_{i=1}^{n} c_i q^{-i} \ge \sum_{i=1}^{n} d_i q^{-i}$ for each positive integer *n* and each other expansion (d_i) of *x*.

Given a base $q \in (1, 2]$ and a real number $x \in J_q := [0, 1/(q-1)]$, we call a sequence $(c_i) = c_1 c_2 \dots$ of zeros and ones an *optimal* expansion of x if

- (c_i) is an expansion of x: $x = \sum_{i=1}^{\infty} c_i q^{-i}$ and if
- among all possible expansions of *x*, the partial sums
 ∑ⁿ_{i=1} c_iq⁻ⁱ, n = 1, 2, ... generated by the expansion (c_i) are
 uniformly closest to *x*, i.e.,

 $\sum_{i=1}^{n} c_i q^{-i} \ge \sum_{i=1}^{n} d_i q^{-i}$ for each positive integer *n* and each other expansion (d_i) of *x*.

Our main result states that, except for a countable set of bases in which every number in J_q has an optimal expansion, "most" numbers have no optimal expansion.

ヘロト 不通 ト イヨト イヨト ニヨー

EXPANSIONS

• Fix a base q > 1 and a finite alphabet $A = \{a_0, ..., a_m\}$ of real numbers satisfying $a_0 < \cdots < a_m$.

イロト 不得 トイヨト イヨト 二日

EXPANSIONS

- Fix a base q > 1 and a finite alphabet $A = \{a_0, ..., a_m\}$ of real numbers satisfying $a_0 < \cdots < a_m$.
- By a sequence we mean a sequence (c_i) = c₁c₂... ∈ A^N of digits in A.

イロト 不得 トイヨト イヨト 二日

EXPANSIONS

- Fix a base q > 1 and a finite alphabet $A = \{a_0, ..., a_m\}$ of real numbers satisfying $a_0 < \cdots < a_m$.
- By a sequence we mean a sequence (c_i) = c₁c₂... ∈ A^N of digits in A.
- By an *expansion of a real number x (in base q with respect to A)* we mean a sequence (*c_i*) satisfying

$$\frac{c_1}{q}+\frac{c_2}{q^2}+\frac{c_3}{q^3}+\cdots=x.$$

The numbers c_i are sometimes called the *digits* of the expansion (c_i) .

EXISTENCE OF EXPANSIONS

Proposition

Each number $x \in J_{A,q} := [a_0/(q-1), a_m/(q-1)]$ has at least one expansion if and only if the Pedicini condition holds:

$$\max_{1\leq j\leq m}\left(a_j-a_{j-1}\right)\leq \frac{a_m-a_0}{q-1}.$$

Martijn de Vries

Optimal expansions

Pisa, December 11th, 2018 5/30

PROOF OF NECESSITY

The condition

$$\max_{1\leq j\leq m}\left(a_j-a_{j-1}\right)\leq \frac{a_m-a_0}{q-1}.$$

is necessary:

э

イロト イヨト イヨト イヨト

PROOF OF NECESSITY

The condition

$$\max_{1\leq j\leq m}\left(a_j-a_{j-1}\right)\leq \frac{a_m-a_0}{q-1}.$$

is necessary:

if $a_{\ell} - a_{\ell-1} > (a_m - a_0)/(q - 1)$ for some ℓ , then none of the numbers in the nonempty interval

$$\left(\frac{a_{\ell-1}}{q} + \sum_{i=2}^{\infty} \frac{a_m}{q^i}, \frac{a_\ell}{q} + \sum_{i=2}^{\infty} \frac{a_0}{q^i}\right)$$

has an expansion.

イロト 不得 トイヨト イヨト

Suppose that *x* ∈ *J*_{A,q}. We define recursively an expansion (*b_i*) of *x* by applying the *greedy algorithm* of Rényi: if for some positive integer *n*, *b_i* is already defined for *i* < *n*, then *b_n* is the largest digit in *A* satisfying ∑ⁿ_{i=1} *b_iq⁻ⁱ* ≤ *x*.

- Suppose that x ∈ J_{A,q}. We define recursively an expansion (b_i) of x by applying the *greedy algorithm* of Rényi: if for some positive integer n, b_i is already defined for i < n, then b_n is the largest digit in A satisfying ∑_{i=1}ⁿ b_iq⁻ⁱ ≤ x.
- We may (and will) assume that $a_0 = 0$, because:

- Suppose that *x* ∈ *J*_{A,q}. We define recursively an expansion (*b_i*) of *x* by applying the *greedy algorithm* of Rényi: if for some positive integer *n*, *b_i* is already defined for *i* < *n*, then *b_n* is the largest digit in *A* satisfying ∑ⁿ_{i=1} *b_iq⁻ⁱ* ≤ *x*.
- We may (and will) assume that $a_0 = 0$, because:

- replacing a_i by $a_i - a_0$ for each *i* does not alter the inequality $\max_{1 \le j \le m} (a_j - a_{j-1}) \le \frac{a_m - a_0}{q-1}$.

- Suppose that *x* ∈ *J*_{A,q}. We define recursively an expansion (*b_i*) of *x* by applying the *greedy algorithm* of Rényi: if for some positive integer *n*, *b_i* is already defined for *i* < *n*, then *b_n* is the largest digit in *A* satisfying ∑ⁿ_{i=1} *b_iq⁻ⁱ* ≤ *x*.
- We may (and will) assume that $a_0 = 0$, because:

- replacing a_i by $a_i - a_0$ for each *i* does not alter the inequality $\max_{1 \le j \le m} (a_j - a_{j-1}) \le \frac{a_m - a_0}{q-1}$.

- *x* has an expansion with respect to alphabet *A* if and only if $x - a_0/(q-1)$ has an expansion with respect to the alphabet $\{0, a_1 - a_0, a_2 - a_0, \dots, a_m - a_0\}$.

<ロト < 回 > < 回 > < 回 > < 回 > - 回 -

If *x* = *a_m*/(*q* − 1), then *b_i* = *a_m* for all *i* so the algorithm provides an expansion.

イロト 不得 トイヨト イヨト 二日

- If x = a_m/(q − 1), then b_i = a_m for all *i* so the algorithm provides an expansion.
- If 0 ≤ x < a_m/(q − 1), then there exists an index n such that b_n < a_m, and for each such n we have

$$0 \leq x - \sum_{i=1}^n \frac{b_i}{q^i} < \frac{\max_{1 \leq j \leq m}(a_j - a_{j-1})}{q^n}.$$

- If $x = a_m/(q-1)$, then $b_i = a_m$ for all *i* so the algorithm provides an expansion.
- If 0 ≤ x < a_m/(q − 1), then there exists an index n such that b_n < a_m, and for each such n we have

$$0 \leq x - \sum_{i=1}^n \frac{b_i}{q^i} < \frac{\max_{1 \leq j \leq m}(a_j - a_{j-1})}{q^n}.$$

- If $b_n < a_m$ for infinitely many *n*, we see that (b_i) is an expansion of *x* by letting $n \to \infty$ along these indices.

- If there were a last index *n* such that $b_n = a_i < a_m$, then

$$\left(\sum_{i=1}^n \frac{b_i}{q^i}\right) + \sum_{i=n+1}^\infty \frac{a_m}{q^i} \le x < \left(\sum_{i=1}^n \frac{b_i}{q^i}\right) + \frac{a_{j+1} - a_j}{q^n}$$

whence

э

イロン イ理 とく ヨン イヨン

- If there were a last index *n* such that $b_n = a_i < a_m$, then

$$\left(\sum_{i=1}^n \frac{b_i}{q^i}\right) + \sum_{i=n+1}^\infty \frac{a_m}{q^i} \le x < \left(\sum_{i=1}^n \frac{b_i}{q^i}\right) + \frac{a_{j+1} - a_j}{q^n}$$

whence

$$\frac{a_m}{q^n(q-1)} < \frac{a_{j+1}-a_j}{q^n}$$

э

イロン イ理 とく ヨン イヨン

- If there were a last index *n* such that $b_n = a_i < a_m$, then

$$\left(\sum_{i=1}^n \frac{b_i}{q^i}\right) + \sum_{i=n+1}^\infty \frac{a_m}{q^i} \le x < \left(\sum_{i=1}^n \frac{b_i}{q^i}\right) + \frac{a_{j+1} - a_j}{q^n}$$

whence

$$\frac{a_m}{q^n(q-1)} < \frac{a_{j+1}-a_j}{q^n}$$

which violates the condition $\max_{1 \le j \le m} (a_j - a_{j-1}) \le \frac{a_m}{q-1}$.

イロト イポト イヨト イヨト 二日

GREEDY MAP

Suppose that (A, q) satisfies the Pedicini condition with $a_0 = 0$. The greedy expansion can also be obtained by iterating the *greedy map corresponding to* (A, q) $T : J_{A,q} \rightarrow J_{A,q}$, defined by

$$T(x) = \begin{cases} qx - a_j, & x \in D(a_j) := \left[\frac{a_j}{q}, \frac{a_{j+1}}{q}\right), & 0 \le j < m, \\ qx - a_m, & x \in D(a_m) := \left[\frac{a_m}{q}, \frac{a_m}{q-1}\right]. \end{cases}$$

GREEDY MAP

Suppose that (A, q) satisfies the Pedicini condition with $a_0 = 0$. The greedy expansion can also be obtained by iterating the *greedy map corresponding to* (A, q) $T : J_{A,q} \rightarrow J_{A,q}$, defined by

$$T(x) = \begin{cases} qx - a_j, & x \in D(a_j) := \left[\frac{a_j}{q}, \frac{a_{j+1}}{q}\right), & 0 \le j < m, \\ qx - a_m, & x \in D(a_m) := \left[\frac{a_m}{q}, \frac{a_m}{q-1}\right]. \end{cases}$$

If (b_i) is the greedy expansion of x in base q, then $b_n = j$ if and only if $T^{n-1}(x) \in D(a_j), n \ge 1, a_j \in A$.

NORMALIZED ERRORS OF AN EXPANSION

The *normalized errors* of an expansion $(c_i) \in A^{\mathbb{N}}$ of $x \in J_{A,q}$ are defined by

$$heta_n((c_i)) := q^n \left(x - \sum_{i=1}^n rac{c_i}{q^i}
ight), \quad n \in \mathbb{N}.$$

3

イロト 不得 トイヨト イヨト

NORMALIZED ERRORS OF AN EXPANSION

The *normalized errors* of an expansion $(c_i) \in A^{\mathbb{N}}$ of $x \in J_{A,q}$ are defined by

$$heta_n((c_i)) := q^n \left(x - \sum_{i=1}^n rac{c_i}{q^i}
ight), \quad n \in \mathbb{N}.$$

An expansion (d_i) of x is optimal if $\theta_n((d_i)) \le \theta_n((c_i))$ for each n and each expansion (c_i) of x.

NORMALIZED ERRORS OF AN EXPANSION

The *normalized errors* of an expansion $(c_i) \in A^{\mathbb{N}}$ of $x \in J_{A,q}$ are defined by

$$heta_n((c_i)) := q^n \left(x - \sum_{i=1}^n rac{c_i}{q^i}
ight), \quad n \in \mathbb{N}.$$

An expansion (d_i) of x is optimal if $\theta_n((d_i)) \le \theta_n((c_i))$ for each n and each expansion (c_i) of x.

Note that only the greedy expansion can be optimal.

イロン イ団と イヨン 一

MAIN RESULT

Till further notice, $A = \{0, 1\}$ and $q \in (1, 2)$. Such couples (A, q) satisfy the Pedicini condition, so each $x \in [0, 1/(q - 1)]$ has a (greedy) expansion.

MAIN RESULT

Till further notice, $A = \{0, 1\}$ and $q \in (1, 2)$. Such couples (A, q) satisfy the Pedicini condition, so each $x \in [0, 1/(q - 1)]$ has a (greedy) expansion.

Let *P* be the set of bases $q \in (1, 2)$ satisfying one of the equalities

$$1=\frac{1}{q}+\cdots+\frac{1}{q^n}, \quad n\geq 2,$$

and let \mathcal{O}_q be the set of numbers with an optimal expansion in base q.

MAIN RESULT

Till further notice, $A = \{0, 1\}$ and $q \in (1, 2)$. Such couples (A, q) satisfy the Pedicini condition, so each $x \in [0, 1/(q - 1)]$ has a (greedy) expansion.

Let *P* be the set of bases $q \in (1, 2)$ satisfying one of the equalities

$$1=\frac{1}{q}+\cdots+\frac{1}{q^n}, \quad n\geq 2,$$

and let \mathcal{O}_q be the set of numbers with an optimal expansion in base q.

Theorem

- If $q \in P$, then $O_q = [0, 1/(q-1)]$.
- If q ∈ (1,2) \ P, then O_q is nowhere dense and has Hausdorff dimension less than 1.

3

イロト 不得 トイヨト イヨト
Let U_q be the set of of numbers in [0, 1/(q − 1)] with only one expansion in base q. Clearly, U_q ⊆ O_q.

3

イロト 不得 トイヨト イヨト

- Let U_q be the set of of numbers in [0, 1/(q − 1)] with only one expansion in base q. Clearly, U_q ⊆ O_q.
- It can be shown that \mathcal{O}_q always contains the closure of \mathcal{U}_q .

3

イロト 不得 トイヨト イヨト

- Let U_q be the set of of numbers in [0, 1/(q − 1)] with only one expansion in base q. Clearly, U_q ⊆ O_q.
- It can be shown that \mathcal{O}_q always contains the closure of \mathcal{U}_q .
- The greedy expansions $(0)^{n-1}1(0)^{\infty}$ and $(1)^n(0)^{\infty}$ of the numbers

$$\frac{1}{q^n}$$
 and $\frac{1}{q} + \cdots + \frac{1}{q^n}$,

respectively, are optimal in base q, for each $n \ge 1$.

Fix $q \in (1, 2)$ and let k be the largest positive integer such that

$$\frac{1}{q}+\cdots+\frac{1}{q^k}<1.$$

3

A D > A B > A B > A B >

Fix $q \in (1, 2)$ and let k be the largest positive integer such that

$$\frac{1}{q}+\cdots+\frac{1}{q^k}<1.$$

Define the numbers $x_n (n \ge 1)$ by

$$x_n:=\frac{1}{q}+\cdots+\frac{1}{q^n}+\frac{1}{q^{n+k+1}}.$$

イロト イポト イヨト イヨト 二日

Fix $q \in (1, 2)$ and let k be the largest positive integer such that

$$\frac{1}{q}+\cdots+\frac{1}{q^k}<1.$$

Define the numbers $x_n (n \ge 1)$ by

$$x_n:=\frac{1}{q}+\cdots+\frac{1}{q^n}+\frac{1}{q^{n+k+1}}.$$

These numbers belong to \mathcal{O}_q , because

$$\frac{1}{q^{n+1}}+\cdots+\frac{1}{q^{n+k}}<\frac{1}{q^n}.$$

Martijn de Vries

Pisa, December 11th, 2018 14/30

イロト イポト イヨト イヨト 二日

Fix $q \in (1, 2)$ and let k be the largest positive integer such that

$$\frac{1}{q}+\cdots+\frac{1}{q^k}<1.$$

Define the numbers $x_n (n \ge 1)$ by

$$x_n:=\frac{1}{q}+\cdots+\frac{1}{q^n}+\frac{1}{q^{n+k+1}}.$$

These numbers belong to \mathcal{O}_q , because

$$\frac{1}{q^{n+1}}+\cdots+\frac{1}{q^{n+k}}<\frac{1}{q^n}.$$

The maximality of *k* implies that $x_n \notin \overline{\mathcal{U}_q}$. Hence $\mathcal{O}_q \setminus \overline{\mathcal{U}_q}$ is infinite for each $q \in (1, 2)$.

Martijn de Vries

Let $G := (1 + \sqrt{5})/2$ be the Golden ratio and suppose that 1 < q < G.

<ロ> <四> <四> <四> <四> <四</p>

Let $G := (1 + \sqrt{5})/2$ be the Golden ratio and suppose that 1 < q < G. Consider the number $x := q^{-2} + q^{-3}$.

Let $G := (1 + \sqrt{5})/2$ be the Golden ratio and suppose that 1 < q < G. Consider the number $x := q^{-2} + q^{-3}$.

The sequence $(c_i) = 011(0)^{\infty}$ is clearly an expansion of *x*.

Let $G := (1 + \sqrt{5})/2$ be the Golden ratio and suppose that 1 < q < G. Consider the number $x := q^{-2} + q^{-3}$.

The sequence $(c_i) = 011(0)^{\infty}$ is clearly an expansion of *x*.

The greedy expansion (b_i) of x in base q starts, however, with 100, since $q^{-1} < q^{-2} + q^{-3}$.

Let $G := (1 + \sqrt{5})/2$ be the Golden ratio and suppose that 1 < q < G. Consider the number $x := q^{-2} + q^{-3}$.

The sequence $(c_i) = 011(0)^{\infty}$ is clearly an expansion of *x*.

The greedy expansion (b_i) of x in base q starts, however, with 100, since $q^{-1} < q^{-2} + q^{-3}$.

Hence $\theta_3((c_i)) = 0 < \theta_3((b_i))$.

Let $G := (1 + \sqrt{5})/2$ be the Golden ratio and suppose that 1 < q < G. Consider the number $x := q^{-2} + q^{-3}$.

The sequence $(c_i) = 011(0)^{\infty}$ is clearly an expansion of *x*.

The greedy expansion (b_i) of x in base q starts, however, with 100, since $q^{-1} < q^{-2} + q^{-3}$.

Hence $\theta_3((c_i)) = 0 < \theta_3((b_i))$.

The greedy expansion of *x* is thus not optimal.

If q lies between two subsequent values of P, i.e., if

э

イロン イ理 とく ヨン イヨン

If q lies between two subsequent values of P, i.e., if

$$rac{1}{q}+\cdots+rac{1}{q^n}<1<rac{1}{q}+\cdots+rac{1}{q^n}+rac{1}{q^{n+1}}$$
 for some *n*, then

э

イロン イ理 とく ヨン イヨン

If q lies between two subsequent values of P, i.e., if

If q lies between two subsequent values of P, i.e., if

$$\frac{1}{q} + \dots + \frac{1}{q^n} < 1 < \frac{1}{q} + \dots + \frac{1}{q^n} + \frac{1}{q^{n+1}} \text{ for some } n \text{, then}$$
$$\frac{1}{q} < \frac{1}{q^2} + \dots + \frac{1}{q^{n+2}} := L < R := \frac{1}{q} + \frac{1}{q^{n+2}}$$

The greedy expansion (b_i) of a number $x \in (L, R)$ starts with $1(0)^{n+1}$ but x has an expansion (c_i) starting with $0(1)^{n+1}$, whence

If q lies between two subsequent values of P, i.e., if

$$\frac{1}{q} + \dots + \frac{1}{q^n} < 1 < \frac{1}{q} + \dots + \frac{1}{q^n} + \frac{1}{q^{n+1}} \text{ for some } n \text{, then}$$
$$\frac{1}{q} < \frac{1}{q^2} + \dots + \frac{1}{q^{n+2}} := L < R := \frac{1}{q} + \frac{1}{q^{n+2}}$$

The greedy expansion (b_i) of a number $x \in (L, R)$ starts with $1(0)^{n+1}$ but x has an expansion (c_i) starting with $0(1)^{n+1}$, whence

 $\theta_{n+2}((c_i)) < \theta_{n+2}((b_i))$, so (b_i) is not optimal.

GREEDY MAP T_k

Each $x \in [0, 1/(q-1)]$ has an expansion in base q, so each such x has an expansion in base q^k ($k \ge 1$) with respect to the alphabet

$$A_k := \{c_1q^{k-1} + c_2q^{k-2} + \cdots + c_{k-1}q + c_k|c_1, \ldots, c_k \in \{0, 1\}\}.$$

イロト 不得 トイヨト イヨト

GREEDY MAP T_k

Each $x \in [0, 1/(q-1)]$ has an expansion in base q, so each such x has an expansion in base q^k ($k \ge 1$) with respect to the alphabet

$$m{A}_k := \{m{c}_1 m{q}^{k-1} + m{c}_2 m{q}^{k-2} + \cdots + m{c}_{k-1} m{q} + m{c}_k | m{c}_1, \dots, m{c}_k \in \{0, 1\}\}.$$

This implies that each $x \in J_{A,q} = J_{A_k,q^k}$ has a greedy expansion with respect to (A_k, q^k) , sometimes called the *k*-block greedy expansion.

GREEDY MAP T_k

Each $x \in [0, 1/(q-1)]$ has an expansion in base q, so each such x has an expansion in base q^k ($k \ge 1$) with respect to the alphabet

$$m{A}_k := \{m{c}_1 m{q}^{k-1} + m{c}_2 m{q}^{k-2} + \cdots + m{c}_{k-1} m{q} + m{c}_k | m{c}_1, \dots, m{c}_k \in \{0, 1\}\}.$$

This implies that each $x \in J_{A,q} = J_{A_k,q^k}$ has a greedy expansion with respect to (A_k, q^k) , sometimes called the *k*-block greedy expansion.

We sometimes refer to the greedy map T_k corresponding to (A_k, q^k) as the *k*-block greedy map. The *k*-fold greedy map T^k is just the *k*-fold composition of the ordinary greedy map T.

COMPARING T_k WITH T^k

Note: The first digit of the greedy expansion of *x* with respect to (A_k, q^k) is not necessarily $b_1q^{k-1} + \cdots + b_{k-1}q + b_k$ if (b_i) is the greedy expansion of *x* with respect to (A, q):

Example

If
$$1 < q < G$$
 and $x = q^{-2} + q^{-3}$, then $q^{-1} < q^{-2} + q^{-3}$ whence $T_3(x) = 0 < T^3(x) = q^3 \left(x - q^{-1}\right)$.

COMPARING T_k WITH T^k

Note: The first digit of the greedy expansion of *x* with respect to (A_k, q^k) is not necessarily $b_1q^{k-1} + \cdots + b_{k-1}q + b_k$ if (b_i) is the greedy expansion of *x* with respect to (A, q):

Example

If
$$1 < q < G$$
 and $x = q^{-2} + q^{-3}$, then $q^{-1} < q^{-2} + q^{-3}$ whence $T_3(x) = 0 < T^3(x) = q^3 (x - q^{-1})$.

Proposition

- For all $x \in [0, 1/(q-1)]$ and $k \ge 1$ we have $T_k(x) \le T^k(x)$.
- $T_k(x) = T^k(x)$ for each $k \ge 1$ if and only if x has an optimal expansion.

3

Given $k \ge 1$, let $S_{q,k}$ be the set of all blocks $(c_1, \ldots, c_k) \in \{0, 1\}^k = A^k$ such that

$$\sum_{i=1}^{k} \frac{d_i}{q^i} \neq \sum_{i=1}^{k} \frac{c_i}{q^i}$$

for each $(d_1, \ldots, d_k) \in A^k$ satisfying $(d_1, \ldots, d_k) > (c_1, \ldots, c_k)$.

Given $k \ge 1$, let $S_{q,k}$ be the set of all blocks $(c_1, \ldots, c_k) \in \{0, 1\}^k = A^k$ such that

$$\sum_{i=1}^{k} \frac{d_i}{q^i} \neq \sum_{i=1}^{k} \frac{c_i}{q^i}$$

for each $(d_1, \ldots, d_k) \in A^k$ satisfying $(d_1, \ldots, d_k) > (c_1, \ldots, c_k)$.

Note that $S_{q,k} \supseteq \{(b_1(x), \dots, b_k(x)) | x \in [0, 1/(q-1)]\}$, but in general we have no equality here:

Given $k \ge 1$, let $S_{q,k}$ be the set of all blocks $(c_1, \ldots, c_k) \in \{0, 1\}^k = A^k$ such that

$$\sum_{i=1}^{k} \frac{d_i}{q^i} \neq \sum_{i=1}^{k} \frac{c_i}{q^i}$$

for each $(d_1, \ldots, d_k) \in A^k$ satisfying $(d_1, \ldots, d_k) > (c_1, \ldots, c_k)$.

Note that $S_{q,k} \supseteq \{(b_1(x), \dots, b_k(x)) \mid x \in [0, 1/(q-1)]\}$, but in general we have no equality here:

Example

If 1 < q < G, then $q^{-1} < q^{-2} + q^{-3}$, hence 011 belongs to $S_{q,3}$ but no greedy expansion starts with 011.

Let the injective map $f: S_{q,k} \to [0,1/(q-1)]$ be given by

$$f((c_1,\ldots,c_k))=rac{c_1}{q}+\cdots+rac{c_k}{q^k}, \quad (c_1,\ldots,c_k)\in S_{q,k}.$$

Let the injective map $f: S_{q,k} \rightarrow [0, 1/(q-1)]$ be given by

$$f((c_1,\ldots,c_k))=rac{c_1}{q}+\cdots+rac{c_k}{q^k},\quad (c_1,\ldots,c_k)\in S_{q,k}.$$

Proposition

The following statements are equivalent.

• The map f is increasing.

Let the injective map $f: S_{q,k} \rightarrow [0, 1/(q-1)]$ be given by

$$f((c_1,\ldots,c_k))=rac{c_1}{q}+\cdots+rac{c_k}{q^k},\quad (c_1,\ldots,c_k)\in S_{q,k}.$$

Proposition

The following statements are equivalent.

• The map f is increasing.

•
$$T_k = T^k$$
.

Let the injective map $f: S_{q,k} \rightarrow [0, 1/(q-1)]$ be given by

$$f((c_1,\ldots,c_k))=rac{c_1}{q}+\cdots+rac{c_k}{q^k},\quad (c_1,\ldots,c_k)\in S_{q,k}.$$

Proposition

The following statements are equivalent.

• The map f is increasing.

•
$$T_k = T^k$$
.

•
$$S_{q,k} = \{(b_1(x), \ldots, b_k(x)) \mid x \in [0, 1/(q-1)]\}.$$

First we show that if $1 = q^{-1} + \cdots + q^{-n}$ for some *n*, then the greedy expansion of each $x \in [0, 1/(q-1)]$ is optimal.

First we show that if $1 = q^{-1} + \cdots + q^{-n}$ for some *n*, then the greedy expansion of each $x \in [0, 1/(q-1)]$ is optimal.

Suppose that (c_1, \ldots, c_k) and (d_1, \ldots, d_k) both belong to $S_{q,k}$ and that $(c_1, \ldots, c_k) > (d_1, \ldots, d_k)$. We must show that

$$\sum_{i=1}^k rac{c_i}{q^i} > \sum_{i=1}^k rac{d_i}{q^i}.$$

First we show that if $1 = q^{-1} + \cdots + q^{-n}$ for some *n*, then the greedy expansion of each $x \in [0, 1/(q-1)]$ is optimal.

Suppose that (c_1, \ldots, c_k) and (d_1, \ldots, d_k) both belong to $S_{q,k}$ and that $(c_1, \ldots, c_k) > (d_1, \ldots, d_k)$. We must show that

$$\sum_{i=1}^k \frac{c_i}{q^i} > \sum_{i=1}^k \frac{d_i}{q^i}.$$

Let *j* be the first index for which $c_j = 1 > d_j = 0$. It is enough to show that

$$\sum_{i=1}^{k-j}\frac{d_{j+i}}{q^i}<1.$$

Blocks in $S_{q,k}$ cannot contain the subblock $0(1)^n$ because the sum corresponding to a block $0(1)^n$ equals the sum corresponding to the lexicographically larger block $1(0)^n$.

Blocks in $S_{q,k}$ cannot contain the subblock $0(1)^n$ because the sum corresponding to a block $0(1)^n$ equals the sum corresponding to the lexicographically larger block $1(0)^n$.

Since $d_j = 0$, (d_{j+1}, \ldots, d_k) cannot contain the block $(1)^n$, whence

Blocks in $S_{q,k}$ cannot contain the subblock $0(1)^n$ because the sum corresponding to a block $0(1)^n$ equals the sum corresponding to the lexicographically larger block $1(0)^n$.

Since $d_j = 0$, (d_{j+1}, \ldots, d_k) cannot contain the block $(1)^n$, whence

$$\sum_{i=1}^{k-j} \frac{d_{j+i}}{q^i} < \sum_{k=0}^{\infty} \left(\frac{1}{q^n}\right)^k \left(\frac{1}{q} + \dots + \frac{1}{q^{n-1}}\right) = 1.$$

Martijn de Vries
OPTIMALITY IF THE BASE BELONGS TO P

Blocks in $S_{q,k}$ cannot contain the subblock $0(1)^n$ because the sum corresponding to a block $0(1)^n$ equals the sum corresponding to the lexicographically larger block $1(0)^n$.

Since $d_j = 0$, (d_{j+1}, \ldots, d_k) cannot contain the block $(1)^n$, whence

$$\sum_{i=1}^{k-j}\frac{d_{j+i}}{q^i} < \sum_{k=0}^{\infty}\left(\frac{1}{q^n}\right)^k\left(\frac{1}{q}+\cdots+\frac{1}{q^{n-1}}\right) = 1.$$

We may conclude that $T_k = T^k$ for each $k \ge 1$; therefore each $x \in [0, 1/(q-1)]$ has an optimal expansion.

For bases q not belonging to P, we have already constructed numbers with no optimal expansion in base q.

< 日 > < 同 > < 回 > < 回 > < □ > <

For bases q not belonging to P, we have already constructed numbers with no optimal expansion in base q.

More precisely, we saw that if $1 = q_n^{-1} + \cdots + q_n^{-n}$ $(n \in \mathbb{N})$ and $q \in (q_n, q_{n+1})$, then no number belonging to the interval

$$\left(\frac{1}{q^2}+\cdots+\frac{1}{q^{n+2}},\frac{1}{q}+\frac{1}{q^{n+2}}\right)$$

has an optimal expansion in base q.

For bases q not belonging to P, we have already constructed numbers with no optimal expansion in base q.

More precisely, we saw that if $1 = q_n^{-1} + \cdots + q_n^{-n}$ $(n \in \mathbb{N})$ and $q \in (q_n, q_{n+1})$, then no number belonging to the interval

$$\left(\frac{1}{q^2}+\cdots+\frac{1}{q^{n+2}},\frac{1}{q}+\frac{1}{q^{n+2}}\right)$$

has an optimal expansion in base q.

This interval is contained in [0, 1), unless *q* is close to 1.

For bases q not belonging to P, we have already constructed numbers with no optimal expansion in base q.

More precisely, we saw that if $1 = q_n^{-1} + \cdots + q_n^{-n}$ $(n \in \mathbb{N})$ and $q \in (q_n, q_{n+1})$, then no number belonging to the interval

$$\left(\frac{1}{q^2}+\cdots+\frac{1}{q^{n+2}},\frac{1}{q}+\frac{1}{q^{n+2}}\right)$$

has an optimal expansion in base q.

This interval is contained in [0, 1), unless *q* is close to 1.

For each $q \in (1,2) \setminus P$ it is possible to construct an open subinterval of [0,1) that does not meet \mathcal{O}_q .

Let V be such an open interval. It is not hard to prove that the set

$$W := \{x \in [0, 1/(q-1)] \mid T^{k}(x) \notin V \text{ for all } k \ge 0\}$$

has Hausdorff dimension less than 1.

Let V be such an open interval. It is not hard to prove that the set

$$W := \{x \in [0, 1/(q-1)] \mid T^k(x) \notin V \text{ for all } k \ge 0\}$$

has Hausdorff dimension less than 1.

Since all tails of an optimal expansion are optimal, this implies that O_q has Hausdorff dimension less than 1.

Let V be such an open interval. It is not hard to prove that the set

$$W := \{x \in [0, 1/(q-1)] \mid T^k(x) \notin V \text{ for all } k \ge 0\}$$

has Hausdorff dimension less than 1.

Since all tails of an optimal expansion are optimal, this implies that \mathcal{O}_q has Hausdorff dimension less than 1.

Finally, using elementary properties of greedy expansions, one may show that numbers belonging to $\overline{\mathcal{O}_q} \setminus \mathcal{O}_q$ (if any) must have a finite expansion.

Let V be such an open interval. It is not hard to prove that the set

$$W := \{x \in [0, 1/(q-1)] \mid T^k(x) \notin V \text{ for all } k \ge 0\}$$

has Hausdorff dimension less than 1.

Since all tails of an optimal expansion are optimal, this implies that \mathcal{O}_q has Hausdorff dimension less than 1.

Finally, using elementary properties of greedy expansions, one may show that numbers belonging to $\overline{\mathcal{O}_q} \setminus \mathcal{O}_q$ (if any) must have a finite expansion.

Hence $\overline{\mathcal{O}_q} \setminus \mathcal{O}_q$ is (at most) countable which implies in particular that $\overline{\mathcal{O}_q}$ is also a null set and therefore has no interior points.

Let V be such an open interval. It is not hard to prove that the set

$$W := \{x \in [0, 1/(q-1)] \mid T^k(x) \notin V \text{ for all } k \ge 0\}$$

has Hausdorff dimension less than 1.

Since all tails of an optimal expansion are optimal, this implies that O_q has Hausdorff dimension less than 1.

Finally, using elementary properties of greedy expansions, one may show that numbers belonging to $\overline{\mathcal{O}_q} \setminus \mathcal{O}_q$ (if any) must have a finite expansion.

Hence $\overline{\mathcal{O}_q} \setminus \mathcal{O}_q$ is (at most) countable which implies in particular that $\overline{\mathcal{O}_q}$ is also a null set and therefore has no interior points.

We may conclude that \mathcal{O}_q is nowhere dense and has Hausdorff dimension less than one if $q \in (1, 2) \setminus P$.

24/30

イロト イヨト イヨト イヨト

GENERALIZATION

For a positive integer *m*, let $A = \{0, 1, ..., m\}$ and let $q \in (m, m + 1)$. Note that the couple (A, q) satisfies the Pedicini condition. Let P_m be the set consisting of bases $q \in (m, m + 1)$ which satisfy one of the equalities

$$1 = rac{m}{q} + \dots + rac{m}{q^n} + rac{p}{q^{n+1}}, \quad n \in \mathbb{N} ext{ and } p \in \{1, \dots, m\}.$$

GENERALIZATION

For a positive integer *m*, let $A = \{0, 1, ..., m\}$ and let $q \in (m, m + 1)$. Note that the couple (A, q) satisfies the Pedicini condition. Let P_m be the set consisting of bases $q \in (m, m + 1)$ which satisfy one of the equalities

$$1=rac{m}{q}+\cdots+rac{m}{q^n}+rac{p}{q^{n+1}},\quad n\in\mathbb{N} ext{ and }p\in\{1,\ldots,m\}$$

Theorem

- If $q \in P_m$, then $O_q = [0, m/(q-1)]$.
- If q ∈ (m, m + 1) \ P_m, then O_q is nowhere dense and has Hausdorff dimension less than 1.

GENERALIZATION

For a positive integer *m*, let $A = \{0, 1, ..., m\}$ and let $q \in (m, m + 1)$. Note that the couple (A, q) satisfies the Pedicini condition. Let P_m be the set consisting of bases $q \in (m, m + 1)$ which satisfy one of the equalities

$$1=rac{m}{q}+\cdots+rac{m}{q^n}+rac{p}{q^{n+1}},\quad n\in\mathbb{N} ext{ and }p\in\{1,\ldots,m\}$$

Theorem

• If
$$q \in P_m$$
, then $O_q = [0, m/(q-1)]$.

 If q ∈ (m, m + 1) \ P_m, then O_q is nowhere dense and has Hausdorff dimension less than 1.

Note: Numbers belonging to $P = \bigcup_m P_m$ are sometimes called *confluent Parry numbers.*

Martijn de Vries

Let $A = \{0, 1, ..., m\}$ and $q \in (m, m + 1)$.

Martijn de Vries

イロト 不得 トイヨト イヨト 二日

Let
$$A = \{0, 1, ..., m\}$$
 and $q \in (m, m + 1)$.

(*Rényi, Parry*) The greedy map $T = T_1$ corresponding to (A, q) is ergodic with respect to a unique normalized absolutely continuous invariant measure (a.c.i.m) μ_1 . The *Parry density* h_q of μ_1 is given by

$$h_q(x) = \frac{1}{F(q)} \sum_{n=0}^{\infty} \frac{1}{q^n} \cdot 1_{[0,T^n(1))}(x),$$

where F(q) is a normalizing constant.

Let
$$A = \{0, 1, ..., m\}$$
 and $q \in (m, m + 1)$.

(*Rényi, Parry*) The greedy map $T = T_1$ corresponding to (A, q) is ergodic with respect to a unique normalized absolutely continuous invariant measure (a.c.i.m) μ_1 . The *Parry density* h_q of μ_1 is given by

$$h_q(x) = \frac{1}{F(q)} \sum_{n=0}^{\infty} \frac{1}{q^n} \cdot 1_{[0,T^n(1))}(x),$$

where F(q) is a normalizing constant.

(*Lasota, Yorke*) For each positive integer k, the greedy map T_k corresponding to (A_k, q^k) is also ergodic with respect to a unique normalized a.c.i.m μ_k , as follows from a more general theorem on piecewise lineair expanding maps.

Martijn de Vries

イロト 不得 トイヨト イヨト 二日

Proposition

 $q \in P$ if and only if $\mu_1 = \mu_k$ for all $k \ge 1$.

Martijn de Vries

Optimal expansions

Pisa, December 11th, 2018 27/30

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Proposition

 $q \in P$ if and only if $\mu_1 = \mu_k$ for all $k \ge 1$.

Sketch of proof: If $q \in P$ and $k \ge 1$, then μ_1 is also an a.c.i.m for T_k because $T_k = T^k$. Since the a.c.i.m is unique, it follows that $\mu_1 = \mu_k$. If $q \notin P$, we have already seen that $T_k < T^k$ for some k on some open subinterval of [0, 1). Arguing by contradiction, one easily derives that $\mu_1 \neq \mu_k$ for this k.

Proposition

 $q \in P$ if and only if $\mu_1 = \mu_k$ for all $k \ge 1$.

Sketch of proof: If $q \in P$ and $k \ge 1$, then μ_1 is also an a.c.i.m for T_k because $T_k = T^k$. Since the a.c.i.m is unique, it follows that $\mu_1 = \mu_k$. If $q \notin P$, we have already seen that $T_k < T^k$ for some k on some open subinterval of [0, 1). Arguing by contradiction, one easily derives that $\mu_1 \neq \mu_k$ for this k.

Open problem: Determine an explicit formula for the density of μ_k if $q \notin P$.

Regarding the topology of \mathcal{O}_q , almost nothing is known if $q \notin P$.

<ロ> <四> <四> <四> <四> <四</p>

Regarding the topology of \mathcal{O}_q , almost nothing is known if $q \notin P$.

Let us address some obvious questions:

イロト 不得 トイヨト イヨト 二日

Regarding the topology of \mathcal{O}_q , almost nothing is known if $q \notin P$.

Let us address some obvious questions:

• For which bases q is the set \mathcal{O}_q (at most) countable?

イロト 不得 トイヨト イヨト 二日

Regarding the topology of \mathcal{O}_q , almost nothing is known if $q \notin P$.

Let us address some obvious questions:

- For which bases q is the set \mathcal{O}_q (at most) countable?
- For which bases q is the set $\mathcal{O}_q \setminus \mathcal{U}_q$ (at most) countable?

Regarding the topology of \mathcal{O}_q , almost nothing is known if $q \notin P$.

Let us address some obvious questions:

- For which bases q is the set \mathcal{O}_q (at most) countable?
- For which bases q is the set $\mathcal{O}_q \setminus \mathcal{U}_q$ (at most) countable?
- For which bases q is the set \mathcal{O}_q closed?

Regarding the topology of \mathcal{O}_q , almost nothing is known if $q \notin P$.

Let us address some obvious questions:

- For which bases q is the set \mathcal{O}_q (at most) countable?
- For which bases q is the set $\mathcal{O}_q \setminus \mathcal{U}_q$ (at most) countable?
- For which bases q is the set \mathcal{O}_q closed?
- For which bases q is the set \mathcal{O}_q a Cantor set?

Regarding the topology of \mathcal{O}_q , almost nothing is known if $q \notin P$.

Let us address some obvious questions:

- For which bases q is the set \mathcal{O}_q (at most) countable?
- For which bases q is the set $\mathcal{O}_q \setminus \mathcal{U}_q$ (at most) countable?
- For which bases q is the set \mathcal{O}_q closed?
- For which bases q is the set \mathcal{O}_q a Cantor set?

Proposition

The set \mathcal{O}_q is closed from above: if $x \notin \mathcal{O}_q$, then there exists a number $\delta = \delta(x) > 0$ so that $[x, x + \delta) \cap \mathcal{O}_q = \emptyset$.

Proof.

If the greedy expansion (b_i) of x is not optimal, then there exists an expansion (c_i) of x and a number $n \ge 1$ such that

$$\sum_{i=1}^n \frac{b_i}{q^i} < \sum_{i=1}^n \frac{c_i}{q^i} \le x.$$

Proof.

If the greedy expansion (b_i) of x is not optimal, then there exists an expansion (c_i) of x and a number $n \ge 1$ such that

$$\sum_{i=1}^n \frac{b_i}{q^i} < \sum_{i=1}^n \frac{c_i}{q^i} \le x.$$

Hence x belongs to the interval

$$E := \left[\sum_{i=1}^{n} \frac{c_i}{q^i}, \sum_{i=1}^{n} \frac{c_i}{q^i} + \sum_{i=n+1}^{\infty} \frac{m}{q^i}\right]$$

Proof.

If the greedy expansion (b_i) of x is not optimal, then there exists an expansion (c_i) of x and a number $n \ge 1$ such that

$$\sum_{i=1}^n \frac{b_i}{q^i} < \sum_{i=1}^n \frac{c_i}{q^i} \le x.$$

Hence x belongs to the interval

$$E := \left[\sum_{i=1}^{n} \frac{c_i}{q^i}, \sum_{i=1}^{n} \frac{c_i}{q^i} + \sum_{i=n+1}^{\infty} \frac{m}{q^i}\right]$$

The map $x \mapsto (b_i)$ is continuous from the right, hence there exists an interval $[x, x + \delta)$ contained in *E* so that each number in $[x, x + \delta)$ has an expansion starting with $b_1 \dots b_n$ and one starting with $c_1 \dots c_n$.

Martijn de Vries

Optimal expansions

REFERENCES

• K. Dajani, C. Kraaikamp, *From greedy to lazy expansions and their driving dynamics*, Expo. Math. 20 (2002) 315-327

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

REFERENCES

- K. Dajani, C. Kraaikamp, *From greedy to lazy expansions and their driving dynamics*, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447
- M. de Vries, V. Komornik, Unique expansions of real numbers, Adv. Math. 221 (2009) 390-427

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447
- M. de Vries, V. Komornik, *Unique expansions of real numbers*, Adv. Math. 221 (2009) 390-427
- A. Lasota, J.A. Yorke, *Exact dynamical systems and the Frobenius-Perron operator*, Trans. Amer. Math. Soc. 273 (1982) 375-384

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447
- M. de Vries, V. Komornik, *Unique expansions of real numbers*, Adv. Math. 221 (2009) 390-427
- A. Lasota, J.A. Yorke, *Exact dynamical systems and the Frobenius-Perron operator*, Trans. Amer. Math. Soc. 273 (1982) 375-384
- W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416

REFERENCES

- K. Dajani, C. Kraaikamp, *From greedy to lazy expansions and their driving dynamics*, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447
- M. de Vries, V. Komornik, *Unique expansions of real numbers*, Adv. Math. 221 (2009) 390-427
- A. Lasota, J.A. Yorke, *Exact dynamical systems and the Frobenius-Perron operator*, Trans. Amer. Math. Soc. 273 (1982) 375-384
- W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416
- M. Pedicini, *Greedy expansions and sets with deleted digits*, Theoret. Comput. Sci 332 (2005), 313–336

REFERENCES

- K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327
- K. Dajani, M. de Vries, V. Komornik, P. Loreti, Optimal expansions in non-integer bases, Proc. Amer. Math. Soc. 140 (2012) 437-447
- M. de Vries, V. Komornik, *Unique expansions of real numbers*, Adv. Math. 221 (2009) 390-427
- A. Lasota, J.A. Yorke, *Exact dynamical systems and the Frobenius-Perron operator*, Trans. Amer. Math. Soc. 273 (1982) 375-384
- W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416
- M. Pedicini, *Greedy expansions and sets with deleted digits*, Theoret. Comput. Sci 332 (2005), 313–336
- A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493