September 23-30, 2012, Centro De Giorgi, Pisa (Italie) ERC Intensive research period on Diophantine Geometry September 25, 2012

Families of Diophantine equations byMichel Waldschmidt

Let K be a number field and $m \in K$, $m \neq 0$. For each unit $\varepsilon \in \mathbf{Z}_{K}^{\times}$, let $f_{\varepsilon}(X) \in \mathbf{Z}[X]$ be the irreducible polynomial of ε over \mathbf{Q} and let $d = [\mathbf{Q}(\varepsilon) : \mathbf{Q}]$ be its degree. Then $F_{\varepsilon}(X,Y) = Y^{d}f_{\varepsilon}(X/Y) \in \mathbf{Z}[X,Y]$ is an irreducible binary form of degree d with integer coefficients. We prove that the set

$$\left\{ (x, y, \varepsilon) \in \mathbf{Z}^2 \times \mathbf{Z}_K^{\times} \mid xy \neq 0, \ [\mathbf{Q}(\varepsilon) : \mathbf{Q}] \ge 3, \ F_{\varepsilon}(x, y) = m \right\}$$

is finite. In some cases the result is effective and we obtain

$$\max\{|x|, |y|, e^{\mathbf{h}(\varepsilon)}\} \le \kappa_1 m^{\kappa_2}$$

with positive and effectively computable constants κ_1 and κ_2 . Here, $h(\varepsilon)$ is the absolute logarithmic height of ε .

This is a joint work with Claude Levesque.