September 23-30, 2012, Centro De Giorgi, Pisa (Italie) ERC Intensive research period on Diophantine Geometry September 25, 2012

Families of Diophantine equations
 by

Michel Waldschmidt

Let K be a number field and $m \in K, m \neq 0$. For each unit $\varepsilon \in \mathbf{Z}_{K}^{\times}$, let $f_{\varepsilon}(X) \in \mathbf{Z}[X]$ be the irreducible polynomial of ε over \mathbf{Q} and let $d=[\mathbf{Q}(\varepsilon): \mathbf{Q}]$ be its degree. Then $F_{\varepsilon}(X, Y)=Y^{d} f_{\varepsilon}(X / Y) \in \mathbf{Z}[X, Y]$ is an irreducible binary form of degree d with integer coefficients. We prove that the set

$$
\left\{(x, y, \varepsilon) \in \mathbf{Z}^{2} \times \mathbf{Z}_{K}^{\times} \mid x y \neq 0,[\mathbf{Q}(\varepsilon): \mathbf{Q}] \geq 3, F_{\varepsilon}(x, y)=m\right\}
$$

is finite. In some cases the result is effective and we obtain

$$
\max \left\{|x|,|y|, e^{\mathrm{h}(\varepsilon)}\right\} \leq \kappa_{1} m^{\kappa_{2}}
$$

with positive and effectively computable constants κ_{1} and κ_{2}. Here, $\mathrm{h}(\varepsilon)$ is the absolute logarithmic height of ε.

This is a joint work with Claude Levesque.

