Ancient solutions to Geometric Evolution Equations - Part I

Panagiota Daskalopoulos

Columbia University

De Giorgi Center - Pisa June 2012

Panagiota Daskalopoulos Ancient solutions to Geometric Evolution Equations - Part I

Introduction to Ancient and Eternal solutions

- We consider ancient and eternal solutions to geometric evolution equations such as: the Curve shortening flow the Ricci flow and the Yamabe flow.
- Definition: A solution to a parabolic equation is called ancient if it is defined for all time -∞ < t < T.
 If the solution is defined for all time -∞ < t < +∞ it is called eternal.
- Ancient and eternal solutions appear as blow up limits near a singularity.
- An ancient solution is typically the blow up limit of a type I singularity, while an eternal solution is the blow up limit of a type II singularity.
- The classification of ancient and eternal solutions often plays a crucial role in understanding the singularities of the flow.

Outline of the talk and main results

- We will first discuss the classification of ancient solutions to the curve shortening flow and the Ricci flow on surfaces. This is joint work with R. Hamilton and N. Sesum.
- CSF: Let Γ_t be an ancient family of closed convex curves embedded in \mathbb{R}^2 which evolve by the curve shortening flow and exist for all time $-\infty < t < T$.

We show that: Γ_t is either a family of contracting circles (type I) or a family of evolving Angenent ovals (type II).

RF: Let g(·, t) be an ancient solution of the Ricci flow on a compact surface that exists for all time -∞ < t < T.
 We show that: g(·, t) is either a family of contracting spheres (type I) or one of the King-Rosenau solutions (type II).

The curve shortening flow

• Let Γ_t be a family of closed curves which is an embedded solution to the CSF, i.e. the embedding $F : \Gamma_t \to \mathbb{R}^2$ satisfies

$$\frac{\partial F}{\partial t} = -\kappa \, \nu$$

with κ the curvature of the curve and ν the outer normal.

- Gage and Hamilton: if Γ_0 is convex, then the CSF shrinks Γ_t to a round point.
- Grayson: if Γ₀ is any embedded curve in ℝ², then the solution Γ_t to the CSF does not develop singularities before it becomes strictly convex.
- We assume from now on that Γ_t is an ancient convex solution to the CSF which defined on $I = (-\infty, 0)$ and shrinks to a point at T = 0.

The evolution of the curvature

• The curvature κ of Γ_t evolves, in terms of its arc-length s, by

$$\kappa_t = \kappa_{ss} + \kappa^3.$$

If θ is the angle between the tangent vector of Γ_t and the x-axis, then on convex curves one can express κ as a function of θ and compute its evolution

$$\kappa_t = \kappa^2 \, \kappa_{\theta\theta} + \kappa^3.$$

• We introduce the pressure function $p = \kappa^2$ which evolves by

$$p_t = p p_{\theta\theta} - \frac{1}{2} p_{\theta}^2 + 2 p^2.$$

• We say that Γ_t is type I if

$$\sup_{\Gamma_t\times(-\infty,-1]}|t|\,p(\theta,t)<\infty.$$

Otherwise we say that Γ_t is of type II.

Examples and the Result

• Example of a type I solution (contracting circles):

$$p(\theta,t)=\frac{1}{2(-t)}, \ t<0.$$

• Example of a type II solution (Angenent ovals):

$$p(heta, t) = \lambda(rac{1}{1 - e^{2\lambda t}} - \sin^2(heta + \gamma)), \ t < 0$$

with parameters $\lambda > 0$ and γ .

As $t \to -\infty$ the Angenent ovals look like two grim reapers glued together.

- Theorem: The only ancient convex solutions to the CSF are the contracting spheres or the Angenent ovals.
- Open Question: Is the convexity assumption necessary ?

A B > A B >

Sketch of proof - Monotone functional

- We will introduce a monotone functional *I(t)* which depends on our solution and analyze its behavior as *t* → -∞ and as *t* → 0 (vanishing time).
- Set $\alpha(\theta, t) := p_{\theta}(\theta, t)$. Then, α satisfies:

$$\alpha_t = p \left(\alpha_{\theta\theta} + 4 \, \alpha \right).$$

We introduce the functional

$$I(\alpha) = \int_0^{2\pi} (\alpha_\theta^2 - 4\alpha^2) \, d\theta.$$

We have

$$rac{d}{dt} I(lpha(t)) = -2 \int_0^{2\pi} rac{lpha_t^2}{p} \, d heta \leq 0.$$

• In particular: $\lim_{t\to-\infty} I(\alpha)(t)$ exists or it is $+\infty$.

Sketch of proof - Classification of limits

We show that

$$\lim_{t \to 0} I(lpha(t)) = 0$$
 and $\lim_{t \to -\infty} I(lpha(t)) = 0.$

$$rac{d}{dt}I(lpha(t))=-2\int_{0}^{2\pi}rac{lpha_{t}^{2}}{
ho}\,d heta\leq 0$$

we conclude that $I(\alpha(t)) \equiv 0$.

- This implies that $\alpha_t \equiv 0$. Hence $\alpha_{\theta\theta} + 4\alpha = 0$.
- Solving in θ gives: $\alpha := p_{\theta} = a(t) \cos 2\theta + b(t) \sin 2\theta$ and plugging back to the equation we conclude

$$p(\theta, t) = rac{1}{-2t}$$
 or $p(\theta, t) = \lambda \left(rac{1}{1 - e^{2\lambda t}} - \sin^2(\theta + \gamma) \right).$

Sketch of proof - $\lim_{t\to 0} I(\alpha(t)) = 0$

- Theorem (Gage Hamilton) If Γ₀ is a closed convex curve embedded in the plane ℝ², the curve shortening flow shrinks Γ_t to a point in a circular manner. Moreover, the curvature κ̃ (and all the derivatives) of the rescaled flow converge to κ̃ = 1 exponentially.
- Recalling that $\alpha := p_{\theta} = (\kappa^2)_{\theta}$ we show that

$$\lim_{t\to 0} I(t) = \lim_{t\to 0} \int_0^{2\pi} (\alpha_\theta^2 - 4\alpha^2) \, d\theta = 0$$

by refining the above convergence result.

• Combining the above concluded the proof of our result.

Sketch of proof - $\lim_{t\to -\infty} I(\alpha(t)) \leq 0$

- We recall that the pressure p satisfies $p_t = p p_{\theta\theta} \frac{1}{2} p_{\theta}^2 + 2 p^2$ and also that $p_t \ge 0$ (Harnack estimate for ancient solutions).
- A direct calculation shows that

$$\left(rac{p_{ heta}^2}{2p}
ight)_t \leq p_{ heta}(p_{ heta})_{ heta heta} + 4p_{ heta}^2$$

Integration by parts gives

$$\frac{d}{dt}\int_0^{2\pi}\frac{p_\theta^2}{2p}\,d\theta=\int_0^{2\pi}(-p_{\theta\theta}^2+4p_\theta^2)\,d\theta=-I(\alpha(t)).$$

• On the other hand, from the inequality $p_t \ge 0$ we obtain

$$\int_0^{2\pi} \frac{p_\theta^2}{2p} \, d\theta \le 2 \, \int_0^{2\pi} p \, d\theta \le C$$

Combining the above gives

$$\lim_{t\to -\infty} I(\alpha(t)) \leq 0.$$

Conclusion

• We set $\alpha(\theta, t) := p_{\theta}(\theta, t)$ and showed that α satisfies:

$$\alpha_t = p \left(\alpha_{\theta\theta} + 4 \, \alpha \right).$$

• We introduced the functional $I(\alpha) = \int_0^{2\pi} (\alpha_{\theta}^2 - 4\alpha^2) d\theta$ and showed that

$$\frac{d}{dt}I(\alpha(t)) = -2\int_0^{2\pi} \frac{\alpha_t^2}{\rho} \, d\theta \leq 0.$$

We showed that

$$\lim_{t \to 0} I(lpha(t)) = 0$$
 and $\lim_{t \to -\infty} I(lpha(t)) = 0.$

- Hence $\alpha_t \equiv 0$, implying $\alpha_{\theta\theta} + 4\alpha = 0$.
- Recalling that $\alpha = p_{\theta}$ and using the equation we conclude

$$p(\theta, t) = rac{1}{-2t}$$
 or $p(\theta, t) = \lambda \left(rac{1}{1 - e^{2\lambda t}} - \sin^2(\theta + \gamma) \right).$

Ancient solutions of the Ricci flow on S^2

• Consider an ancient solution of the Ricci flow

(RF)
$$\frac{\partial g_{ij}}{\partial t} = -2 R_{ij}$$

on S^2 that exists for all time $-\infty < t < T$ and becomes singular at time T.

- In dim 2, we have $R_{ij} = \frac{1}{2}R g_{ij}$, where R is the scalar curvature.
- B. Chow, R. Hamilton: After re-normalization, the metric becomes spherical at t = T.
- Choose a parametrization $g_{s^2} = d\psi^2 + \cos^2 \psi \, d\theta^2$ of the limiting spherical metric and parametrize the (RF) by this, i.e. we write $g(\cdot, t) = u(\cdot, t) g_{s^2}$.

ヨッ イヨッ イヨッ

The equations for the conformal factor in different coordinates

• If $g_{ij} = u g_{s^2}$, then it was first observed by Angenent and L.F. Wu that the (RF) becomes equivalent to

$$u_t = \Delta_{S^2} \log u - 2$$
, on $S^2 \times (-\infty, T)$.

• In Euclidean and Cylindrical coordinates where $g_{ij} = \bar{u} g_{euc} = \hat{u} g_{cyl}$ and

$$\hat{u}(s,\theta,t) = r^2 \, \bar{u}(r,\theta,t), \qquad s = \log r$$

we have

$$ar{u}_t = \Delta \log ar{u}, \qquad ext{on } \mathbb{R}^2 imes (-\infty, T)$$

and

$$\hat{u}_t = \Delta_{_{cyl}} \log \hat{u}, \qquad ext{on } \mathbb{R} imes [0, 2\pi] imes (-\infty, \mathcal{T})$$

The equation for the pressure

• We have just seen that if $g(\cdot, t) = u(\cdot, t) g_{S^2}$, then the (RF) becomes equivalent to:

$$u_t = \Delta_{S^2} \log u - 2$$
, on $S^2 \times (-\infty, T)$.

- Assume from now on that T = 0.
- It is natural to consider the pressure function $v = u^{-1}$ which evolves by

(PE)
$$v_t = v \Delta_{s^2} v - |\nabla v|^2 + 2v^2.$$

• Example of a type I solution (contracting spheres):

$$v(\psi, \theta, t) = \frac{1}{2(-t)}$$

The King-Rosenau solutions

- We look for explicit ancient solutions $g_{ij} = \bar{u} g_{euc}$ of the (RF) which become singular at time T = 0.
- J.R. King (1993) looked for radial solutions of equation (LFD) where the pressure function v
 i. = u
 i. =u
 i. =u
- A direct calculation shows that

 $\bar{v}(x,t) = a(t) + 2 b(t) |x|^2 + a(t) |x|^4$

where either a(t) = b(t) (contracting spheres) or

$$a(t) = -rac{\mu}{2} \operatorname{csch}(4\mu t), \quad b(t) = -rac{\mu}{2} \operatorname{coth}(4\mu t), \quad \mu > 0.$$

- These solutions were independently discovered by P. Rosenau.
- The King-Rosenau solutions are not self-similar. As $t \to -\infty$ they look like two cigar (Barenblatt self similar) solutions glued together.

伺 と く ヨ と く ヨ と

The classification result

Theorem: (D., R. Hamilton, N. Sesum) An ancient solution to the (RF) on S^2 is either one of the contracting spheres or one of the King-Rosenau solutions. Sketch of proof:

We recall that if $g(\cdot, t) = u(\cdot, t) g_{s^2}$ is the evolving metric, then the *pressure* $v = u^{-1}$ satisfies:

$$v_t = v \Delta_{s^2} v - |\nabla v|^2 + 2v^2 = R v > 0$$

- We show, by establishing sharp a priori derivative estimates, that $v(\cdot, t) \xrightarrow{C^{1,\alpha}} v_{\infty}$, as $t \to -\infty$, for all $\alpha < 1$.
- Via a suitable Lyapunov functional we show that

$$R_{\infty} := \lim_{t \to -\infty} R(\cdot, t) = 0$$
 a.e. on S^2

and

$$v_{\infty}\,\Delta_{_{S^2}}v_{\infty}-|
abla v_{\infty}|^2+2v_{\infty}^2=0$$
 a.e. on S^2

Sketch of proof - Continuation

ullet We next classify the steady states v_∞ which satisfy

$$v_{\infty} \Delta_{s^2} v_{\infty} - |\nabla v_{\infty}|^2 + 2v_{\infty}^2 = 0.$$

Main Step: We show that v_{∞} has at most two zeros. We conclude that

$$m{v}_{\infty}(\psi, heta)=C\,\cos^2\psi,\qquad ext{for}\,\,C\geq 0$$

namely that the pointwise limit as $t \to -\infty$ is a cylinder.

- If C = 0, then v must be a family of contracting spheres.
- If C > 0, then v must be one of the King-Rosenau solutions.

Lyapunov functional and convergence as $t \to -\infty$

• We recall that the *pressure* $v = u^{-1}$ satisfies:

(PE)
$$v_t = v \Delta_{s^2} v - |\nabla v|^2 + 2v^2 = R v > 0.$$

Hence, the limit $v_{\infty} := \lim_{t \to -\infty} v(\cdot, t)$ exists and is bounded. Moreover, by a priori estimates:

$$oldsymbol{v}(\cdot,t) \stackrel{\mathcal{C}^{1,lpha}}{\longrightarrow} oldsymbol{v}_{\infty}, \;\; ext{as} \; t
ightarrow -\infty, \;\;\; orall lpha < 1.$$

• We introduce the Lyapunov functional:

$$J(t) = \int_{S^n} \left(\frac{|\nabla v|^2}{v} - 4 v \right) \, da$$

and show that $-C \leq J(t) \leq 0$ (for all $t \leq t_0 < 0$) and

$$\frac{d}{dt}J(t)=-2\int_{S^n}\frac{v_t^2}{v^2}\,da-2\int_{S^n}\frac{|\nabla v|^2}{v^2}\,v_t\,da<0.$$

Lyapunov functional and convergence as $t ightarrow -\infty$

• We have just seen that $-C \leq J(t) \leq 0$ and

$$\frac{d}{dt}J(t)=-2\int_{S^n}\frac{v_t^2}{v^2}\,da-2\int_{S^n}\frac{|\nabla v|^2}{v^2}\,v_t\,da<0.$$

• Integrating in time, yields (for any au < 0)

$$\int_{-\infty}^{\tau} \int_{S^n} \frac{v_t^2}{v^2} \, da + \int_{-\infty}^{\tau} \int_{S^n} \frac{|\nabla v|^2}{v^2} \, v_t \, da < \infty.$$

• Since and $v_t = Rv > 0$, it follows that

$$\liminf_{t\to-\infty}\int_{S^n}\frac{v_t^2}{v^2}(\cdot,t)\,da=0.$$

• We conclude that the limit v_{∞} is a $C^{1,\alpha}$ weak solution of the steady state equation $v_{\infty} \Delta_{s^2} v_{\infty} - |\nabla v_{\infty}|^2 + 2v_{\infty}^2 = 0$.

Classification of backward limits

• We have just seen that $v_{\infty}(\psi, \theta) := \lim_{t \to -\infty} v(\psi, \theta, t)$ is a $C^{1,\alpha}$ weak solution of the steady state equation

$$v_{\infty}\Delta_{s^2}v_{\infty}-|\nabla v_{\infty}|^2+2v_{\infty}^2=0.$$

• Theorem: There exists a conformal change of S^2 in which

 $\mathbf{v}_{\infty}(\psi, heta) := \lim_{t \to -\infty} \mathbf{v}(\psi, heta, t) = C \cos^2 \psi, \quad C \ge 0$

and the convergence is in $C^{1,\alpha}(S^2) \cap C^{\infty}(S^2 \setminus \{\text{poles}\})$.

• Main Step: Either $v_{\infty} \equiv 0$ or v_{∞} has at most two zeros.

Sketch of the proof of the Main step

- Main Step: Either $v_{\infty} \equiv 0$ or v_{∞} has at most two zeros.
- We express $g_{ij} = \bar{u} g_{euc}$ and recall that for each t, $\bar{u}(\cdot, t)$ is a solution of the elliptic equation

 $-\Delta \log \bar{u} = R \bar{u}, \quad \text{on } \mathbb{R}^2.$

- Recall that $R_{\infty} = 0$ a.e.
- Basic Lemma: Let $\delta > 0$ be a given small number. If for some $t \le t_0$, $\rho < 1$ and $x_0 \in R^2$, with $|x_0| \le r_0$, we have

 $\int_{B_{\rho}(x_0)} R\,\bar{u}\left(\cdot,t\right) dx \leq 4\pi - 2\delta$

then: $\sup_{B_{\rho/4}(x_0)} \overline{u}(\cdot, t) \leq C(r_0, \rho, \delta).$

• Since $\int_{\mathbb{R}^2} R \, \bar{u}(x,t) \, dx = 8\pi$, $\bar{u}_{\infty} := \lim_{t \to -\infty} \bar{u}(\cdot,t)$ is equal to infinity at most two points. Equivalently, $\bar{v}_{\infty} := \bar{u}_{\infty}^{-1}$ has at most two zeros.

「同 ト イ ヨ ト - イ ヨ ト - - ヨ

The proof of the crucial L^{∞} bound

- The proof of this L[∞] bound is inspired by a work of Brezis and Merle (1991). In particular we use the following inequality:
- Theorem (Brezis-Merle) Assume that $\Omega \subset \mathrm{R}^2$ is a bounded domain and let *h* be a solution of

$$\begin{cases} -\Delta h = f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

with $f \in L^1(\Omega)$. Then, for every $\delta \in (0, 4\pi)$ we have

$$\int_{\Omega} e^{\frac{(4\pi-\delta)\|h(x)\|}{\|f\|_{L^1(\Omega)}}} dx \leq \frac{4\pi^2}{\delta} (\operatorname{diam} \Omega)^2.$$

• We apply the above inequality to $h := \log \bar{u}$, $f = -R \bar{u}$ and $\Omega = B_{\rho}(x_0)$ to show that if $\|f\|_{L^1(B_{\rho}(x_0))} < 4\pi - \delta$, then $\log \bar{u}$ is bounded in $B_{\rho/2}(x_0)$.

Classification of backward limits

• We will now conclude that

$$\mathbf{v}_{\infty}(\psi, heta):=\lim_{t o -\infty}\mathbf{v}(\psi, heta,t)=C\,\cos^2\psi,\quad C\geq 0.$$

- Assume that v_{∞} is not identically zero.
- Choose a conformal change of S² which brings the two possible zeros of v_∞ to two antipodal poles S, N on S².
- Perform Mercator's projection to map S² \ {S, N} onto a cylinder C and set v̂(s, θ, t) = v(ψ, θ, t) cosh² s.

• We have

$$\lim_{t\to -\infty} \hat{v}(s,\theta,t) = \hat{v}_{\infty}(s,\theta) := v_{\infty}(\psi,\theta) \cosh^2 s > 0$$

uniformly on compact subsets of $\mathbb{R} \times [0, 2\pi]$.

• The limit \hat{v}_{∞} satisfies $\Delta_{cvl} \hat{v}_{\infty} = 0$. We conclude that in our case $\hat{v}_{\infty} \equiv C$, for some $C \ge 0$, i.e. $v_{\infty}(\psi, \theta) = C \cos^2 \psi$.

The King-Rosenau solutions

- Assuming that $v_{\infty}(\psi, \theta) = C \cos^2 \psi$, with C > 0, we will show that $v(\cdot, t)$ is one of the King-Rosenau solutions.
- We switch to plane coordinates, expressing

$$g = v^{-1} g_{S^2} = \bar{v}^{-1} (dx^2 + dy^2).$$

 To capture the King-Rosenau solutions we consider the scaling invariant quantity

$$Q(x, y, t) := \bar{v} \left[\left(\bar{v}_{xxx} - 3 \bar{v}_{xyy} \right)^2 + \left(\bar{v}_{yyy} - 3 \bar{v}_{xxy} \right)^2 \right].$$

- We observe that $Q \equiv 0$ on all three the King-Rosenau solutions, the cigar solutions and the cylinder solutions.
- We will show that $Q \equiv 0$ and conclude that \overline{v} is one of the King-Rosenau solutions.

To establish that $Q \equiv 0$ we proceed as follows:

• We first show that Q(t) is well defined on \mathbb{R}^2 and that

 $Q_{\max}(t) := \sup_{\mathbb{R}^2} Q(x,t)$

exists and is finite for all t.

- We then show that $Q_{\max}(t)$ is decreasing in t.
- We also show that $\lim_{t\to -\infty} Q_{\max}(t) = 0$.
- We conclude that $Q(\cdot, t) \equiv 0$, for all t.

The King-Rosenau solutions

To establish that

 $\lim_{t\to -\infty} Q_{\max}(t) = 0$

we use the fact that the only possible backward geometric limits are the cigar solutions or the cylinders.

- The proof involves a rather shuttle geometric argument by contradiction.
- To show that $Q_{\max}(t)$ is decreasing in t one considers the evolution equation of $Q(\cdot, t)$ and computes (after a long calculation done with mathematica !) that Q satisfies

 $Q_t - v \Delta Q \leq 0$, on $\mathbb{R}^2 \times (-\infty, 0)$.

Then you apply the maximum principle.

伺 とう きょう とう とうしょう

The case when the backward limit $v_{\infty}\equiv 0$

Proposition: If $v_{\infty} := \lim_{t \to -\infty} v(\cdot, t) \equiv 0$, then $v(\psi, \theta, t) = \frac{1}{2(-t)}$ (contracting spheres).

• Any simple closed curve γ with length $L(\gamma)$, divides the surface into two regions, with areas $A_1(\gamma)$ and $A_2(\gamma)$. We define the isoperimetric ratio

$$I(t) = \frac{1}{4\pi} \inf_{\gamma} L^2 \left(\frac{1}{A_1} + \frac{1}{A_2} \right) \le 1.$$

- It is well known that $I \equiv 1$ iff the surface is a sphere.
- Hamilton computed that under the Ricci flow:

$$I'(t) \geq rac{4\pi \left(A_1^2 + A_2^2
ight)}{A_1 A_2 (A_1 + A_2)} I(1 - I^2).$$

• Since $A_1 + A_2 = 8\pi |t|$ and $A_1^2 + A_2^2 \ge 2A_1A_2$, we conclude the differential inequality

$$I'(t) \geq rac{1}{|t|} I(1-I^2).$$

伺 と く ヨ と く ヨ と

The case when the backward limit $v_{\infty} \equiv 0$

- We argue by contradiction to show that $I(t_0) \equiv 1$.
- If $I(t_0) < 1$, for some $t_0 < 0$, it follows from the ODE that :

$$I(t) \leq rac{C_1}{|t|}, \qquad orall t < t_0 < 0.$$

• We show that: $\exists t_k \downarrow -\infty$ and curves $\beta_k \in S^2$ s.t.

 $L_{S^2}(eta_k) \geq c > 0 \quad ext{and} \quad L_{g(t_k)}(eta_k) \leq C < \infty.$

Since

$$L_{g(t_k)}(\beta_k) = \int_{\beta_k} \sqrt{u(t_k)} \, d_{S^2}$$

the above contradicts the fact that

$$\lim_{t\to-\infty}u(\cdot,t)=v_{\infty}^{-1}=+\infty.$$

Open problems - Mean Curvature flow

- Problem: Provide the classification of ancient convex compact solutions of the Mean Curvature flow in dimensions $n \ge 2$.
- The equivalent of the Angenent ovals in higher dimensions have been recently formally shown to exist by S. Angenent.
- The backward time limit, as $t \to -\infty$, of an n-dim Angenent oval is $\mathbb{R}^k \times S^{n-k}$.
- Xu-Jia Wang has classified the backward time limit of all ancient convex solutions to the n-dimensional MCF as Sⁿ or S^k × R^{n-k} or the plane ℝⁿ of multiplicity two.
- Open Question: Are the contracting spheres and the Angenent ovals the only ancient convex compact solutions of the n-dim MCF ?

Open problems - 3-dim Ricci flow

- Problem: Provide the classification of ancient compact solutions of the 3-dimensional Ricci flow.
- Type I: The only type I compact ancient solutions are the contracting spheres.
- Brendle, Huisken and Sinestrari have shown that ancient solutions to the 3-dim Ricci flow that satisfy a pinching curvature condition are of type I.
- The analogue to the King-Rosenau solutions in dimension n = 3 have been shown to exist by Perelman.
- Other compact solutions in closed form have been found by V.A. Fateev in a paper dated back to 1996. These solutions are k collapsing.

伺 ト く ヨ ト く ヨ ト

Open problems - 3-dim Ricci flow

- The Perelman solutions are rotationally symmetric and type II. They are also k non-collapsing.
- The Perelman solutions are not given in closed form.
- The formal asymptotic behavior of the Perelman solutions as $t \rightarrow -\infty$ follows from a recent work of Angenent, Caputo and Knopf.
- Open Problem 1: Are all compact k non-collapsing solutions of the 3-dim Ricci flow radially symmetric ?
- Open Problem 2: Are the only radially symmetric solutions of the 3-dim Ricci flow the Perelman solutions ?