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Introduction to Ancient and Eternal solutions

We consider ancient and eternal solutions to geometric
evolution equations such as: the Curve shortening flow the
Ricci flow and the Yamabe flow.

Definition: A solution to a parabolic equation is called ancient
if it is defined for all time −∞ < t < T .

If the solution is defined for all time −∞ < t < +∞ it is
called eternal.

Ancient and eternal solutions appear as blow up limits near a
singularity.

An ancient solution is typically the blow up limit of a type I
singularity, while an eternal solution is the blow up limit of a
type II singularity.

The classification of ancient and eternal solutions often plays
a crucial role in understanding the singularities of the flow.
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Outline of the talk and main results

We will first discuss the classification of ancient solutions to
the curve shortening flow and the Ricci flow on surfaces.
This is joint work with R. Hamilton and N. Sesum.

CSF: Let Γt be an ancient family of closed convex curves
embedded in R2 which evolve by the curve shortening flow
and exist for all time −∞ < t < T .

We show that: Γt is either a family of contracting circles
(type I) or a family of evolving Angenent ovals (type II).

RF: Let g(·, t) be an ancient solution of the Ricci flow on a
compact surface that exists for all time −∞ < t < T .

We show that: g(·, t) is either a family of contracting spheres
(type I) or one of the King-Rosenau solutions (type II).
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The curve shortening flow

Let Γt be a family of closed curves which is an embedded
solution to the CSF, i.e. the embedding F : Γt → R2 satisfies

∂F

∂t
= −κ ν

with κ the curvature of the curve and ν the outer normal.

Gage and Hamilton: if Γ0 is convex, then the CSF shrinks Γt

to a round point.

Grayson: if Γ0 is any embedded curve in R2, then the
solution Γt to the CSF does not develop singularities before it
becomes strictly convex.

We assume from now on that Γt is an ancient convex solution
to the CSF which defined on I = (−∞, 0) and shrinks to a
point at T = 0.
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The evolution of the curvature

The curvature κ of Γt evolves, in terms of its arc-length s, by

κt = κss + κ3.

If θ is the angle between the tangent vector of Γt and the
x-axis, then on convex curves one can express κ as a function
of θ and compute its evolution

κt = κ2 κθθ + κ3.

We introduce the pressure function p = κ2 which evolves by

pt = p pθθ −
1

2
p2
θ + 2 p2.

We say that Γt is type I if

sup
Γt×(−∞,−1]

|t| p(θ, t) <∞.

Otherwise we say that Γt is of type II.
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Examples and the Result

Example of a type I solution (contracting circles):

p(θ, t) =
1

2(−t)
, t < 0.

Example of a type II solution (Angenent ovals):

p(θ, t) = λ(
1

1− e2λt
− sin2(θ + γ)), t < 0

with parameters λ > 0 and γ.
As t → −∞ the Angenent ovals look like two grim reapers
glued together.

Theorem: The only ancient convex solutions to the CSF are
the contracting spheres or the Angenent ovals.

Open Question: Is the convexity assumption necessary ?
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Sketch of proof - Monotone functional

We will introduce a monotone functional I (t) which depends
on our solution and analyze its behavior
as t → −∞ and as t → 0 (vanishing time).

Set α(θ, t) := pθ(θ, t). Then, α satisfies:

αt = p (αθθ + 4α).

We introduce the functional

I (α) =

∫ 2π

0
(α2

θ − 4α2) dθ.

We have
d

dt
I (α(t)) = −2

∫ 2π

0

α2
t

p
dθ ≤ 0.

In particular: limt→−∞ I (α)(t) exists or it is +∞.
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Sketch of proof - Classification of limits

We show that

lim
t→0

I (α(t)) = 0 and lim
t→−∞

I (α(t)) = 0.

Since
d

dt
I (α(t)) = −2

∫ 2π

0

α2
t

p
dθ ≤ 0

we conclude that I (α(t)) ≡ 0.

This implies that αt ≡ 0. Hence αθθ + 4α = 0.

Solving in θ gives: α := pθ = a(t) cos 2θ + b(t) sin 2θ and
plugging back to the equation we conclude

p(θ, t) =
1

−2t
or p(θ, t) = λ (

1

1− e2λt
− sin2(θ + γ)).
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Sketch of proof - limt→0 I (α(t)) = 0

Theorem (Gage - Hamilton) If Γ0 is a closed convex curve
embedded in the plane R2, the curve shortening flow shrinks
Γt to a point in a circular manner. Moreover, the curvature κ̃
(and all the derivatives) of the rescaled flow converge to
κ̃ = 1 exponentially.

Recalling that α := pθ = (κ2)θ we show that

lim
t→0

I (t) = lim
t→0

∫ 2π

0
(α2

θ − 4α2) dθ = 0

by refining the above convergence result.

Combining the above concluded the proof of our result.
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Sketch of proof - limt→−∞ I (α(t)) ≤ 0

We recall that the pressure p satisfies pt = p pθθ − 1
2 p2

θ + 2 p2

and also that pt ≥ 0 (Harnack estimate for ancient solutions).

A direct calculation shows that(
p2
θ

2p

)
t

≤ pθ(pθ)θθ + 4p2
θ

Integration by parts gives

d

dt

∫ 2π

0

p2
θ

2p
dθ =

∫ 2π

0
(−p2

θθ + 4p2
θ) dθ = −I (α(t)).

On the other hand, from the inequality pt ≥ 0 we obtain∫ 2π

0

p2
θ

2p
dθ ≤ 2

∫ 2π

0
p dθ ≤ C

Combining the above gives

lim
t→−∞

I (α(t)) ≤ 0.
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Conclusion

We set α(θ, t) := pθ(θ, t) and showed that α satisfies:

αt = p (αθθ + 4α).

We introduced the functional I (α) =
∫ 2π

0 (α2
θ − 4α2) dθ and

showed that

d

dt
I (α(t)) = −2

∫ 2π

0

α2
t

p
dθ ≤ 0.

We showed that

lim
t→0

I (α(t)) = 0 and lim
t→−∞

I (α(t)) = 0.

Hence αt ≡ 0, implying αθθ + 4α = 0.

Recalling that α = pθ and using the equation we conclude

p(θ, t) =
1

−2t
or p(θ, t) = λ (

1

1− e2λt
− sin2(θ + γ)).
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Ancient solutions of the Ricci flow on S2

Consider an ancient solution of the Ricci flow

(RF)
∂gij

∂t
= −2 Rij

on S2 that exists for all time −∞ < t < T and becomes
singular at time T .

In dim 2, we have Rij = 1
2R gij , where R is the scalar

curvature.

B. Chow, R. Hamilton: After re-normalization, the metric
becomes spherical at t = T .

Choose a parametrization g
S2 = dψ2 + cos2 ψ dθ2 of the

limiting spherical metric and parametrize the (RF) by this, i.e.
we write g(·, t) = u(·, t) g

S2 .
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The equations for the conformal factor in different
coordinates

If gij = u g
S2 , then it was first observed by Angenent and L.F.

Wu that the (RF) becomes equivalent to

ut = ∆
S2 log u − 2, on S2 × (−∞,T ).

In Euclidean and Cylindrical coordinates where
gij = ū geuc = û g

cyl
and

û(s, θ, t) = r2 ū(r , θ, t), s = log r

we have
ūt = ∆ log ū, on R2 × (−∞,T )

and

ût = ∆
cyl

log û, on R× [0, 2π]× (−∞,T )
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The equation for the pressure

We have just seen that if g(·, t) = u(·, t) g
S2 , then the (RF)

becomes equivalent to:

ut = ∆S2 log u − 2, on S2 × (−∞,T ).

Assume from now on that T = 0.

It is natural to consider the pressure function v = u−1 which
evolves by

(PE) vt = v ∆
S2 v − |∇v |2 + 2v2.

Example of a type I solution (contracting spheres):

v(ψ, θ, t) =
1

2(−t)
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The King-Rosenau solutions

We look for explicit ancient solutions gij = ū geuc of the (RF)
which become singular at time T = 0.

J.R. King (1993) looked for radial solutions of equation (LFD)
where the pressure function v̄ := ū−1 is a polynomial function
in r := |x | with coefficients depending on t.
A direct calculation shows that

v̄(x , t) = a(t) + 2 b(t) |x |2 + a(t) |x |4

where either a(t) = b(t) (contracting spheres ) or

a(t) = −µ
2

csch(4µt), b(t) = −µ
2

coth(4µt), µ > 0.

These solutions were independently discovered by P. Rosenau.

The King-Rosenau solutions are not self-similar. As t → −∞
they look like two cigar (Barenblatt self similar) solutions
glued together.
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The classification result

Theorem: (D., R. Hamilton, N. Sesum)

An ancient solution to the (RF) on S2 is either one of the
contracting spheres or one of the King-Rosenau solutions.

Sketch of proof:

We recall that if g(·, t) = u(·, t) g
S2 is the evolving metric, then

the pressure v = u−1 satisfies:

vt = v ∆
S2 v − |∇v |2 + 2v2 = R v > 0

We show, by establishing sharp a’priori derivative estimates,

that v(·, t)
C1,α

−→ v∞ , as t → −∞, for all α < 1.

Via a suitable Lyapunov functional we show that

R∞ := lim
t→−∞

R(·, t) = 0 a.e. on S2

and
v∞ ∆

S2 v∞ − |∇v∞ |2 + 2v2
∞ = 0 a.e. on S2
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Sketch of proof - Continuation

We next classify the steady states v∞ which satisfy

v∞ ∆
S2 v∞ − |∇v∞ |2 + 2v2

∞ = 0.

Main Step: We show that v∞ has at most two zeros.

We conclude that

v∞(ψ, θ) = C cos2 ψ, for C ≥ 0

namely that the pointwise limit as t → −∞ is a cylinder.

If C = 0, then v must be a family of contracting spheres.

If C > 0, then v must be one of the King-Rosenau solutions.
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Lyapunov functional and convergence as t → −∞

We recall that the pressure v = u−1 satisfies:

(PE) vt = v ∆
S2 v − |∇v |2 + 2v2 = R v > 0.

Hence, the limit v∞ := limt→−∞ v(·, t) exists and is bounded.
Moreover, by a priori estimates:

v(·, t)
C1,α

−→ v∞, as t → −∞, ∀α < 1.

We introduce the Lyapunov functional:

J(t) =

∫
Sn

(
|∇v |2

v
− 4 v

)
da

and show that −C ≤ J(t) ≤ 0 (for all t ≤ t0 < 0) and

d

dt
J(t) = −2

∫
Sn

v2
t

v2
da− 2

∫
Sn

|∇v |2

v2
vt da< 0.
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Lyapunov functional and convergence as t → −∞

We have just seen that −C ≤ J(t) ≤ 0 and

d

dt
J(t) = −2

∫
Sn

v2
t

v2
da− 2

∫
Sn

|∇v |2

v2
vt da< 0.

Integrating in time, yields (for any τ < 0)∫ τ

−∞

∫
Sn

v2
t

v2
da +

∫ τ

−∞

∫
Sn

|∇v |2

v2
vt da <∞.

Since and vt = Rv > 0, it follows that

lim inf
t→−∞

∫
Sn

v2
t

v2
(·, t) da = 0.

We conclude that the limit v∞ is a C 1,α weak solution of the
steady state equation v∞∆

S2 v∞ − |∇v∞|2 + 2v2
∞ = 0.
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Classification of backward limits

We have just seen that v∞(ψ, θ) := limt→−∞ v(ψ, θ, t) is a
C 1,α weak solution of the steady state equation

v∞∆
S2 v∞ − |∇v∞|2 + 2v2

∞ = 0.

Theorem: There exists a conformal change of S2 in which

v∞(ψ, θ) := lim
t→−∞

v(ψ, θ, t) = C cos2 ψ, C ≥ 0

and the convergence is in C 1,α(S2) ∩ C∞(S2\{poles}).

Main Step: Either v∞ ≡ 0 or v∞ has at most two zeros.
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Sketch of the proof of the Main step

Main Step: Either v∞ ≡ 0 or v∞ has at most two zeros.

We express gij = ū geuc and recall that for each t, ū(·, t) is a
solution of the elliptic equation

−∆ log ū = R ū, on R2.

Recall that R∞ = 0 a.e.

Basic Lemma: Let δ > 0 be a given small number. If for some
t ≤ t0, ρ < 1 and x0 ∈ R2, with |x0| ≤ r0, we have∫

Bρ(x0)

R ū (·, t) dx ≤ 4π − 2δ

then: supBρ/4(x0) ū(·, t) ≤ C (r0, ρ, δ).

Since
∫

R2
R ū(x , t) dx = 8π, ū∞ := limt→−∞ ū(·, t) is equal to

infinity at most two points. Equivalently, v̄∞ := ū−1
∞ has at

most two zeros.
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The proof of the crucial L∞ bound

The proof of this L∞ bound is inspired by a work of Brezis and
Merle (1991). In particular we use the following inequality:

Theorem (Brezis-Merle) Assume that Ω ⊂ R2 is a bounded
domain and let h be a solution of{

−∆h = f (x) in Ω,

u = 0 on ∂Ω,

with f ∈ L1(Ω). Then, for every δ ∈ (0, 4π) we have∫
Ω

e
(4π−δ)|h(x)|
‖f ‖

L1(Ω) dx ≤ 4π2

δ
(diam Ω)2.

We apply the above inequality to h := log ū, f = −R ū and
Ω = Bρ(x0) to show that if ‖f ‖

L1(Bρ(x0))
< 4π − δ, then log ū is

bounded in B
ρ/2

(x0).
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Classification of backward limits

We will now conclude that

v∞(ψ, θ) := lim
t→−∞

v(ψ, θ, t) = C cos2 ψ, C ≥ 0.

Assume that v∞ is not identically zero.

Choose a conformal change of S2 which brings the two
possible zeros of v∞ to two antipodal poles S ,N on S2.

Perform Mercator’s projection to map S2 \ {S ,N} onto a
cylinder C and set v̂(s, θ, t) = v(ψ, θ, t) cosh2 s.

We have

lim
t→−∞

v̂(s, θ, t) = v̂∞(s, θ) := v∞(ψ, θ) cosh2 s > 0

uniformly on compact subsets of R× [0, 2π].

The limit v̂∞ satisfies ∆
cyl

v̂∞ = 0. We conclude that in our

case v̂∞ ≡ C , for some C ≥ 0, i.e. v∞(ψ, θ) = C cos2 ψ.
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The King-Rosenau solutions

Assuming that v∞(ψ, θ) = C cos2 ψ, with C > 0, we will
show that v(·, t) is one of the King-Rosenau solutions.

We switch to plane coordinates, expressing

g = v−1 gS2 = v̄−1 (dx2 + dy2).

To capture the King-Rosenau solutions we consider the scaling
invariant quantity

Q(x , y , t) := v̄
[(

v̄xxx − 3v̄xyy

)2
+
(
v̄yyy − 3v̄xxy

)2]
.

We observe that Q ≡ 0 on all three the King-Rosenau
solutions, the cigar solutions and the cylinder solutions.

We will show that Q ≡ 0 and conclude that v̄ is one of the
King-Rosenau solutions.
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The King-Rosenau solutions

To establish that Q ≡ 0 we proceed as follows:

We first show that Q(t) is well defined on R2 and that

Qmax(t) := sup
R2

Q(x , t)

exists and is finite for all t.

We then show that Qmax(t) is decreasing in t.

We also show that limt→−∞Qmax(t) = 0.

We conclude that Q(·, t) ≡ 0, for all t.
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The King-Rosenau solutions

To establish that
lim

t→−∞
Qmax(t) = 0

we use the fact that the only possible backward geometric
limits are the cigar solutions or the cylinders.

The proof involves a rather shuttle geometric argument by
contradiction.

To show that Qmax(t) is decreasing in t one considers the
evolution equation of Q(·, t) and computes (after a long
calculation done with mathematica !) that Q satisfies

Qt − v ∆Q ≤ 0, on R2 × (−∞, 0).

Then you apply the maximum principle.
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The case when the backward limit v∞ ≡ 0

Proposition: If v∞ := limt→−∞ v(·, t) ≡ 0, then v(ψ, θ, t) = 1
2(−t)

(contracting spheres).

Any simple closed curve γ with length L(γ), divides the
surface into two regions, with areas A1(γ) and A2(γ). We
define the isoperimetric ratio

I (t) =
1

4π
inf
γ

L2 (
1

A1
+

1

A2
) ≤ 1.

It is well known that I ≡ 1 iff the surface is a sphere.

Hamilton computed that under the Ricci flow:

I ′(t) ≥ 4π (A2
1 + A2

2)

A1A2(A1 + A2)
I (1− I 2).

Since A1 + A2 = 8π|t| and A2
1 + A2

2 ≥ 2A1A2, we conclude
the differential inequality

I ′(t) ≥ 1

|t|
I (1− I 2).
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The case when the backward limit v∞ ≡ 0

We argue by contradiction to show that I (t0) ≡ 1.

If I (t0) < 1, for some t0 < 0, it follows from the ODE that :

I (t) ≤ C1

|t|
, ∀t < t0 < 0.

We show that: ∃tk ↓ −∞ and curves βk ∈ S2 s.t.

LS2(βk) ≥ c > 0 and Lg(tk )(βk) ≤ C <∞.

Since

Lg(tk )(βk) =

∫
βk

√
u(tk) dS2

the above contradicts the fact that

lim
t→−∞

u(·, t) = v−1
∞ = +∞.
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Open problems - Mean Curvature flow

Problem: Provide the classification of ancient convex compact
solutions of the Mean Curvature flow in dimensions n ≥ 2.

The equivalent of the Angenent ovals in higher dimensions
have been recently formally shown to exist by S. Angenent.

The backward time limit, as t → −∞, of an n-dim Angenent
oval is Rk × Sn−k .

Xu-Jia Wang has classified the backward time limit of all
ancient convex solutions to the n-dimensional MCF as Sn or
Sk × Rn−k or the plane Rn of multiplicity two.

Open Question: Are the contracting spheres and the
Angenent ovals the only ancient convex compact solutions of
the n-dim MCF ?
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Open problems - 3-dim Ricci flow

Problem: Provide the classification of ancient compact
solutions of the 3-dimensional Ricci flow.

Type I: The only type I compact ancient solutions are the
contracting spheres.

Brendle, Huisken and Sinestrari have shown that ancient
solutions to the 3-dim Ricci flow that satisfy a pinching
curvature condition are of type I.

The analogue to the King-Rosenau solutions in dimension
n = 3 have been shown to exist by Perelman.

Other compact solutions in closed form have been found by
V.A. Fateev in a paper dated back to 1996. These solutions
are k collapsing.
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Open problems - 3-dim Ricci flow

The Perelman solutions are rotationally symmetric and type II.
They are also k non-collapsing.

The Perelman solutions are not given in closed form.

The formal asymptotic behavior of the Perelman solutions as
t → −∞ follows from a recent work of Angenent, Caputo and
Knopf.

Open Problem 1: Are all compact k non-collapsing solutions
of the 3-dim Ricci flow radially symmetric ?

Open Problem 2: Are the only radially symmetric solutions of
the 3-dim Ricci flow the Perelman solutions ?
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