Ancient solutions to Geometric Evolution Equations - Part I

Panagiota Daskalopoulos

Columbia University

De Giorgi Center - Pisa June 2012

Introduction to Ancient and Eternal solutions

- We consider ancient and eternal solutions to geometric evolution equations such as: the Curve shortening flow the Ricci flow and the Yamabe flow.
- Definition: A solution to a parabolic equation is called ancient if it is defined for all time $-\infty<t<T$.
If the solution is defined for all time $-\infty<t<+\infty$ it is called eternal.
- Ancient and eternal solutions appear as blow up limits near a singularity.
- An ancient solution is typically the blow up limit of a type I singularity, while an eternal solution is the blow up limit of a type II singularity.
- The classification of ancient and eternal solutions often plays a crucial role in understanding the singularities of the flow.

Outline of the talk and main results

- We will first discuss the classification of ancient solutions to the curve shortening flow and the Ricci flow on surfaces.
This is joint work with R. Hamilton and N. Sesum.
- CSF: Let Γ_{t} be an ancient family of closed convex curves embedded in \mathbb{R}^{2} which evolve by the curve shortening flow and exist for all time $-\infty<t<T$.
We show that: Γ_{t} is either a family of contracting circles (type I) or a family of evolving Angenent ovals (type II).
- RF: Let $g(\cdot, t)$ be an ancient solution of the Ricci flow on a compact surface that exists for all time $-\infty<t<T$.
We show that: $g(\cdot, t)$ is either a family of contracting spheres (type I) or one of the King-Rosenau solutions (type II).

The curve shortening flow

- Let Γ_{t} be a family of closed curves which is an embedded solution to the CSF, i.e. the embedding $F: \Gamma_{t} \rightarrow \mathbb{R}^{2}$ satisfies

$$
\frac{\partial F}{\partial t}=-\kappa \nu
$$

with κ the curvature of the curve and ν the outer normal.

- Gage and Hamilton: if Γ_{0} is convex, then the CSF shrinks Γ_{t} to a round point.
- Grayson: if Γ_{0} is any embedded curve in \mathbb{R}^{2}, then the solution Γ_{t} to the CSF does not develop singularities before it becomes strictly convex.
- We assume from now on that Γ_{t} is an ancient convex solution to the CSF which defined on $I=(-\infty, 0)$ and shrinks to a point at $T=0$.

The evolution of the curvature

- The curvature κ of Γ_{t} evolves, in terms of its arc-length s, by

$$
\kappa_{t}=\kappa_{s s}+\kappa^{3}
$$

- If θ is the angle between the tangent vector of Γ_{t} and the x-axis, then on convex curves one can express κ as a function of θ and compute its evolution

$$
\kappa_{t}=\kappa^{2} \kappa_{\theta \theta}+\kappa^{3}
$$

- We introduce the pressure function $p=\kappa^{2}$ which evolves by

$$
p_{t}=p p_{\theta \theta}-\frac{1}{2} p_{\theta}^{2}+2 p^{2} .
$$

- We say that Γ_{t} is type I if

$$
\sup _{\Gamma_{t} \times(-\infty,-1]}|t| p(\theta, t)<\infty .
$$

Otherwise we say that Γ_{t} is of type II.

Examples and the Result

- Example of a type I solution (contracting circles):

$$
p(\theta, t)=\frac{1}{2(-t)}, \quad t<0
$$

- Example of a type II solution (Angenent ovals):

$$
p(\theta, t)=\lambda\left(\frac{1}{1-e^{2 \lambda t}}-\sin ^{2}(\theta+\gamma)\right), \quad t<0
$$

with parameters $\lambda>0$ and γ.
As $t \rightarrow-\infty$ the Angenent ovals look like two grim reapers glued together.

- Theorem: The only ancient convex solutions to the CSF are the contracting spheres or the Angenent ovals.
- Open Question: Is the convexity assumption necessary ?

Sketch of proof - Monotone functional

- We will introduce a monotone functional $I(t)$ which depends on our solution and analyze its behavior as $t \rightarrow-\infty$ and as $t \rightarrow 0$ (vanishing time).
- Set $\alpha(\theta, t):=p_{\theta}(\theta, t)$. Then, α satisfies:

$$
\alpha_{t}=p\left(\alpha_{\theta \theta}+4 \alpha\right)
$$

- We introduce the functional

$$
I(\alpha)=\int_{0}^{2 \pi}\left(\alpha_{\theta}^{2}-4 \alpha^{2}\right) d \theta
$$

- We have

$$
\frac{d}{d t} I(\alpha(t))=-2 \int_{0}^{2 \pi} \frac{\alpha_{t}^{2}}{p} d \theta \leq 0
$$

- In particular: $\lim _{t \rightarrow-\infty} I(\alpha)(t)$ exists or it is $+\infty$.

Sketch of proof - Classification of limits

- We show that

$$
\lim _{t \rightarrow 0} I(\alpha(t))=0 \quad \text { and } \quad \lim _{t \rightarrow-\infty} I(\alpha(t))=0
$$

- Since

$$
\frac{d}{d t} I(\alpha(t))=-2 \int_{0}^{2 \pi} \frac{\alpha_{t}^{2}}{p} d \theta \leq 0
$$

we conclude that $I(\alpha(t)) \equiv 0$.

- This implies that $\alpha_{t} \equiv 0$. Hence $\alpha_{\theta \theta}+4 \alpha=0$.
- Solving in θ gives: $\alpha:=p_{\theta}=a(t) \cos 2 \theta+b(t) \sin 2 \theta$ and plugging back to the equation we conclude

$$
p(\theta, t)=\frac{1}{-2 t} \quad \text { or } \quad p(\theta, t)=\lambda\left(\frac{1}{1-e^{2 \lambda t}}-\sin ^{2}(\theta+\gamma)\right) .
$$

Sketch of proof $-\lim _{t \rightarrow 0} I(\alpha(t))=0$

- Theorem (Gage - Hamilton) If Γ_{0} is a closed convex curve embedded in the plane \mathbb{R}^{2}, the curve shortening flow shrinks Γ_{t} to a point in a circular manner. Moreover, the curvature $\tilde{\kappa}$ (and all the derivatives) of the rescaled flow converge to $\tilde{\kappa}=1$ exponentially.
- Recalling that $\alpha:=p_{\theta}=\left(\kappa^{2}\right)_{\theta}$ we show that

$$
\lim _{t \rightarrow 0} I(t)=\lim _{t \rightarrow 0} \int_{0}^{2 \pi}\left(\alpha_{\theta}^{2}-4 \alpha^{2}\right) d \theta=0
$$

by refining the above convergence result.

- Combining the above concluded the proof of our result.

Sketch of proof $-\lim _{t \rightarrow-\infty} I(\alpha(t)) \leq 0$

- We recall that the pressure p satisfies $p_{t}=p p_{\theta \theta}-\frac{1}{2} p_{\theta}^{2}+2 p^{2}$ and also that $p_{t} \geq 0$ (Harnack estimate for ancient solutions).
- A direct calculation shows that

$$
\left(\frac{p_{\theta}^{2}}{2 p}\right)_{t} \leq p_{\theta}\left(p_{\theta}\right)_{\theta \theta}+4 p_{\theta}^{2}
$$

- Integration by parts gives

$$
\frac{d}{d t} \int_{0}^{2 \pi} \frac{p_{\theta}^{2}}{2 p} d \theta=\int_{0}^{2 \pi}\left(-p_{\theta \theta}^{2}+4 p_{\theta}^{2}\right) d \theta=-I(\alpha(t))
$$

- On the other hand, from the inequality $p_{t} \geq 0$ we obtain

$$
\int_{0}^{2 \pi} \frac{p_{\theta}^{2}}{2 p} d \theta \leq 2 \int_{0}^{2 \pi} p d \theta \leq C
$$

- Combining the above gives

$$
\lim _{t \rightarrow-\infty} I(\alpha(t)) \leq 0
$$

Conclusion

- We set $\alpha(\theta, t):=p_{\theta}(\theta, t)$ and showed that α satisfies:

$$
\alpha_{t}=p\left(\alpha_{\theta \theta}+4 \alpha\right)
$$

- We introduced the functional $I(\alpha)=\int_{0}^{2 \pi}\left(\alpha_{\theta}^{2}-4 \alpha^{2}\right) d \theta$ and showed that

$$
\frac{d}{d t} I(\alpha(t))=-2 \int_{0}^{2 \pi} \frac{\alpha_{t}^{2}}{p} d \theta \leq 0
$$

- We showed that

$$
\lim _{t \rightarrow 0} I(\alpha(t))=0 \quad \text { and } \quad \lim _{t \rightarrow-\infty} I(\alpha(t))=0
$$

- Hence $\alpha_{t} \equiv 0$, implying $\alpha_{\theta \theta}+4 \alpha=0$.
- Recalling that $\alpha=p_{\theta}$ and using the equation we conclude

$$
p(\theta, t)=\frac{1}{-2 t} \quad \text { or } \quad p(\theta, t)=\lambda\left(\frac{1}{1-e^{2 \lambda t}}-\sin ^{2}(\theta+\gamma)\right)
$$

Ancient solutions of the Ricci flow on S^{2}

- Consider an ancient solution of the Ricci flow

$$
(\mathrm{RF}) \quad \frac{\partial g_{i j}}{\partial t}=-2 R_{i j}
$$

on S^{2} that exists for all time $-\infty<t<T$ and becomes singular at time T.

- In $\operatorname{dim} 2$, we have $R_{i j}=\frac{1}{2} R g_{i j}$, where R is the scalar curvature.
- B. Chow, R. Hamilton: After re-normalization, the metric becomes spherical at $t=T$.
- Choose a parametrization $g_{s^{2}}=d \psi^{2}+\cos ^{2} \psi d \theta^{2}$ of the limiting spherical metric and parametrize the (RF) by this, i.e. we write $g(\cdot, t)=u(\cdot, t) g_{s^{2}}$.

The equations for the conformal factor in different coordinates

- If $g_{i j}=u g_{s^{2}}$, then it was first observed by Angenent and L.F. Wu that the (RF) becomes equivalent to

$$
u_{t}=\Delta_{S^{2}} \log u-2, \quad \text { on } S^{2} \times(-\infty, T)
$$

- In Euclidean and Cylindrical coordinates where

$$
\begin{aligned}
& g_{i j}=\bar{u} g_{\text {euc }}=\hat{u} g_{c y \prime} \text { and } \\
& \qquad \hat{u}(s, \theta, t)=r^{2} \bar{u}(r, \theta, t), \quad s=\log r
\end{aligned}
$$

we have

$$
\bar{u}_{t}=\Delta \log \bar{u}, \quad \text { on } \mathbb{R}^{2} \times(-\infty, T)
$$

and

$$
\hat{u}_{t}=\Delta_{c y 1} \log \hat{u}, \quad \text { on } \mathbb{R} \times[0,2 \pi] \times(-\infty, T)
$$

The equation for the pressure

- We have just seen that if $g(\cdot, t)=u(\cdot, t) g_{s^{2}}$, then the (RF) becomes equivalent to:

$$
u_{t}=\Delta_{S^{2}} \log u-2, \quad \text { on } S^{2} \times(-\infty, T)
$$

- Assume from now on that $T=0$.
- It is natural to consider the pressure function $v=u^{-1}$ which evolves by

$$
\text { (PE) } \quad v_{t}=v \Delta_{s^{2}} v-|\nabla v|^{2}+2 v^{2}
$$

- Example of a type I solution (contracting spheres):

$$
v(\psi, \theta, t)=\frac{1}{2(-t)}
$$

The King-Rosenau solutions

- We look for explicit ancient solutions $g_{i j}=\bar{u} g_{\text {euc }}$ of the (RF) which become singular at time $T=0$.
- J.R. King (1993) looked for radial solutions of equation (LFD) where the pressure function $\bar{v}:=\bar{u}^{-1}$ is a polynomial function in $r:=|x|$ with coefficients depending on t.
- A direct calculation shows that

$$
\bar{v}(x, t)=a(t)+2 b(t)|x|^{2}+a(t)|x|^{4}
$$

where either $a(t)=b(t)$ (contracting spheres) or

$$
a(t)=-\frac{\mu}{2} \operatorname{csch}(4 \mu t), \quad b(t)=-\frac{\mu}{2} \operatorname{coth}(4 \mu t), \quad \mu>0 .
$$

- These solutions were independently discovered by P. Rosenau.
- The King-Rosenau solutions are not self-similar. As $t \rightarrow-\infty$ they look like two cigar (Barenblatt self similar) solutions glued together.

The classification result

Theorem: (D., R. Hamilton, N. Sesum)
An ancient solution to the (RF) on S^{2} is either one of the contracting spheres or one of the King-Rosenau solutions.

Sketch of proof:
We recall that if $g(\cdot, t)=u(\cdot, t) g_{s^{2}}$ is the evolving metric, then the pressure $v=u^{-1}$ satisfies:

$$
v_{t}=v \Delta_{s^{2}} v-|\nabla v|^{2}+2 v^{2}=R v>0
$$

- We show, by establishing sharp a'priori derivative estimates, that $v(\cdot, t) \xrightarrow{C^{1, \alpha}} v_{\infty}$, as $t \rightarrow-\infty$, for all $\alpha<1$.
- Via a suitable Lyapunov functional we show that

$$
R_{\infty}:=\lim _{t \rightarrow-\infty} R(\cdot, t)=0 \quad \text { a.e. on } S^{2}
$$

and

$$
v_{\infty} \Delta_{S^{2}} v_{\infty}-\left|\nabla v_{\infty}\right|^{2}+2 v_{\infty}^{2}=0 \quad \text { a.e. on } S^{2}
$$

Sketch of proof - Continuation

- We next classify the steady states v_{∞} which satisfy

$$
v_{\infty} \Delta_{s^{2}} v_{\infty}-\left|\nabla v_{\infty}\right|^{2}+2 v_{\infty}^{2}=0
$$

Main Step: We show that v_{∞} has at most two zeros.
We conclude that

$$
v_{\infty}(\psi, \theta)=C \cos ^{2} \psi, \quad \text { for } C \geq 0
$$

namely that the pointwise limit as $t \rightarrow-\infty$ is a cylinder.

- If $C=0$, then v must be a family of contracting spheres.
- If $C>0$, then v must be one of the King-Rosenau solutions.

Lyapunov functional and convergence as t

- We recall that the pressure $v=u^{-1}$ satisfies:

$$
\text { (PE) } \quad v_{t}=v \Delta_{s^{2}} v-|\nabla v|^{2}+2 v^{2}=R v>0
$$

Hence, the limit $v_{\infty}:=\lim _{t \rightarrow-\infty} v(\cdot, t)$ exists and is bounded. Moreover, by a priori estimates:

$$
v(\cdot, t) \xrightarrow{c_{1, \alpha}} v_{\infty}, \text { as } t \rightarrow-\infty, \quad \forall \alpha<1 .
$$

- We introduce the Lyapunov functional:

$$
J(t)=\int_{S^{n}}\left(\frac{|\nabla v|^{2}}{v}-4 v\right) d a
$$

and show that $-C \leq J(t) \leq 0$ (for all $t \leq t_{0}<0$) and

$$
\frac{d}{d t} J(t)=-2 \int_{S^{n}} \frac{v_{t}^{2}}{v^{2}} d a-2 \int_{S^{n}} \frac{|\nabla v|^{2}}{v^{2}} v_{t} d a<0
$$

Lyapunov functional and convergence as t

- We have just seen that $-C \leq J(t) \leq 0$ and

$$
\frac{d}{d t} J(t)=-2 \int_{S^{n}} \frac{v_{t}^{2}}{v^{2}} d a-2 \int_{S^{n}} \frac{|\nabla v|^{2}}{v^{2}} v_{t} d a<0
$$

- Integrating in time, yields (for any $\tau<0$)

$$
\int_{-\infty}^{\tau} \int_{S^{n}} \frac{v_{t}^{2}}{v^{2}} d a+\int_{-\infty}^{\tau} \int_{S^{n}} \frac{|\nabla v|^{2}}{v^{2}} v_{t} d a<\infty
$$

- Since and $v_{t}=R v>0$, it follows that

$$
\liminf _{t \rightarrow-\infty} \int_{S^{n}} \frac{v_{t}^{2}}{v^{2}}(\cdot, t) d a=0
$$

- We conclude that the limit v_{∞} is a $C^{1, \alpha}$ weak solution of the steady state equation $v_{\infty} \Delta_{s^{2}} v_{\infty}-\left|\nabla v_{\infty}\right|^{2}+2 v_{\infty}^{2}=0$.

Classification of backward limits

- We have just seen that $v_{\infty}(\psi, \theta):=\lim _{t \rightarrow-\infty} v(\psi, \theta, t)$ is a $C^{1, \alpha}$ weak solution of the steady state equation

$$
v_{\infty} \Delta_{s^{2}} v_{\infty}-\left|\nabla v_{\infty}\right|^{2}+2 v_{\infty}^{2}=0
$$

- Theorem: There exists a conformal change of S^{2} in which

$$
v_{\infty}(\psi, \theta):=\lim _{t \rightarrow-\infty} v(\psi, \theta, t)=C \cos ^{2} \psi, \quad C \geq 0
$$

and the convergence is in $C^{1, \alpha}\left(S^{2}\right) \cap C^{\infty}\left(S^{2} \backslash\right.$ poles $\left.\}\right)$.

- Main Step: Either $v_{\infty} \equiv 0$ or v_{∞} has at most two zeros.

Sketch of the proof of the Main step

- Main Step: Either $v_{\infty} \equiv 0$ or v_{∞} has at most two zeros.
- We express $g_{i j}=\bar{u} g_{\text {euc }}$ and recall that for each $t, \bar{u}(\cdot, t)$ is a solution of the elliptic equation

$$
-\Delta \log \bar{u}=R \bar{u}, \quad \text { on } \mathbb{R}^{2} .
$$

- Recall that $R_{\infty}=0$ a.e.
- Basic Lemma: Let $\delta>0$ be a given small number. If for some $t \leq t_{0}, \rho<1$ and $x_{0} \in R^{2}$, with $\left|x_{0}\right| \leq r_{0}$, we have

$$
\int_{B_{\rho}\left(x_{0}\right)} R \bar{u}(\cdot, t) d x \leq 4 \pi-2 \delta
$$

then: $\sup _{B_{\rho / 4}\left(x_{0}\right)} \bar{u}(\cdot, t) \leq C\left(r_{0}, \rho, \delta\right)$.

- Since $\int_{\mathbb{R}^{2}} R \bar{u}(x, t) d x=8 \pi, \bar{u}_{\infty}:=\lim _{t \rightarrow-\infty} \bar{u}(\cdot, t)$ is equal to infinity at most two points. Equivalently, $\bar{v}_{\infty}:=\bar{u}_{\infty}^{-1}$ has at most two zeros.

The proof of the crucial L^{∞} bound

- The proof of this L^{∞} bound is inspired by a work of Brezis and Merle (1991). In particular we use the following inequality:
- Theorem (Brezis-Merle) Assume that $\Omega \subset R^{2}$ is a bounded domain and let h be a solution of

$$
\left\{\begin{aligned}
-\Delta h & =f(x) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}\right.
$$

with $f \in L^{1}(\Omega)$. Then, for every $\delta \in(0,4 \pi)$ we have

$$
\int_{\Omega} e^{\frac{(4 \pi-\delta)|h(x)|}{\| f L^{1}(\Omega)}} d x \leq \frac{4 \pi^{2}}{\delta}(\operatorname{diam} \Omega)^{2}
$$

- We apply the above inequality to $h:=\log \bar{u}, f=-R \bar{u}$ and $\Omega=B_{\rho}\left(x_{0}\right)$ to show that if $\|f\|_{L^{1}\left(B_{\rho}\left(x_{0}\right)\right)}<4 \pi-\delta$, then $\log \bar{u}$ is bounded in $B_{\rho / 2}\left(x_{0}\right)$.

Classification of backward limits

- We will now conclude that

$$
v_{\infty}(\psi, \theta):=\lim _{t \rightarrow-\infty} v(\psi, \theta, t)=C \cos ^{2} \psi, \quad C \geq 0
$$

- Assume that v_{∞} is not identically zero.
- Choose a conformal change of S^{2} which brings the two possible zeros of v_{∞} to two antipodal poles S, N on S^{2}.
- Perform Mercator's projection to map $S^{2} \backslash\{S, N\}$ onto a cylinder \mathcal{C} and set $\hat{v}(s, \theta, t)=v(\psi, \theta, t) \cosh ^{2} s$.
- We have

$$
\lim _{t \rightarrow-\infty} \hat{v}(s, \theta, t)=\hat{v}_{\infty}(s, \theta):=v_{\infty}(\psi, \theta) \cosh ^{2} s>0
$$

uniformly on compact subsets of $\mathbb{R} \times[0,2 \pi]$.

- The limit \hat{v}_{∞} satisfies $\Delta_{c y} \hat{v}_{\infty}=0$. We conclude that in our case $\hat{v}_{\infty} \equiv C$, for some $C \geq 0$, i.e. $v_{\infty}(\psi, \theta)=C \cos ^{2} \psi$.

The King-Rosenau solutions

- Assuming that $v_{\infty}(\psi, \theta)=C \cos ^{2} \psi$, with $C>0$, we will show that $v(\cdot, t)$ is one of the King-Rosenau solutions.
- We switch to plane coordinates, expressing

$$
g=v^{-1} g_{S^{2}}=\bar{v}^{-1}\left(d x^{2}+d y^{2}\right)
$$

- To capture the King-Rosenau solutions we consider the scaling invariant quantity

$$
Q(x, y, t):=\bar{v}\left[\left(\bar{v}_{x x x}-3 \bar{v}_{x y y}\right)^{2}+\left(\bar{v}_{y y y}-3 \bar{v}_{x x y}\right)^{2}\right] .
$$

- We observe that $Q \equiv 0$ on all three the King-Rosenau solutions, the cigar solutions and the cylinder solutions.
- We will show that $Q \equiv 0$ and conclude that \bar{v} is one of the King-Rosenau solutions.

The King-Rosenau solutions

To establish that $Q \equiv 0$ we proceed as follows:

- We first show that $Q(t)$ is well defined on \mathbb{R}^{2} and that

$$
Q_{\max }(t):=\sup _{\mathbb{R}^{2}} Q(x, t)
$$

exists and is finite for all t.

- We then show that $Q_{\max }(t)$ is decreasing in t.
- We also show that $\lim _{t \rightarrow-\infty} Q_{\max }(t)=0$.
- We conclude that $Q(\cdot, t) \equiv 0$, for all t.

The King-Rosenau solutions

- To establish that

$$
\lim _{t \rightarrow-\infty} Q_{\max }(t)=0
$$

we use the fact that the only possible backward geometric limits are the cigar solutions or the cylinders.

- The proof involves a rather shuttle geometric argument by contradiction.
- To show that $Q_{\max }(t)$ is decreasing in t one considers the evolution equation of $Q(\cdot, t)$ and computes (after a long calculation done with mathematica !) that Q satisfies

$$
Q_{t}-v \Delta Q \leq 0, \quad \text { on } \mathbb{R}^{2} \times(-\infty, 0)
$$

Then you apply the maximum principle.

The case when the backward limit $v_{\infty} \equiv 0$

Proposition: If $v_{\infty}:=\lim _{t \rightarrow-\infty} v(\cdot, t) \equiv 0$, then $v(\psi, \theta, t)=\frac{1}{2(-t)}$ (contracting spheres).

- Any simple closed curve γ with length $L(\gamma)$, divides the surface into two regions, with areas $A_{1}(\gamma)$ and $A_{2}(\gamma)$. We define the isoperimetric ratio

$$
I(t)=\frac{1}{4 \pi} \inf _{\gamma} L^{2}\left(\frac{1}{A_{1}}+\frac{1}{A_{2}}\right) \leq 1 .
$$

- It is well known that $I \equiv 1$ iff the surface is a sphere.
- Hamilton computed that under the Ricci flow:

$$
I^{\prime}(t) \geq \frac{4 \pi\left(A_{1}^{2}+A_{2}^{2}\right)}{A_{1} A_{2}\left(A_{1}+A_{2}\right)} I\left(1-I^{2}\right)
$$

- Since $A_{1}+A_{2}=8 \pi|t|$ and $A_{1}^{2}+A_{2}^{2} \geq 2 A_{1} A_{2}$, we conclude the differential inequality

$$
I^{\prime}(t) \geq \frac{1}{|t|} I\left(1-I^{2}\right)
$$

The case when the backward limit $v_{\infty} \equiv 0$

- We argue by contradiction to show that $I\left(t_{0}\right) \equiv 1$.
- If $I\left(t_{0}\right)<1$, for some $t_{0}<0$, it follows from the ODE that :

$$
I(t) \leq \frac{C_{1}}{|t|}, \quad \forall t<t_{0}<0
$$

- We show that: $\exists t_{k} \downarrow-\infty$ and curves $\beta_{k} \in S^{2}$ s.t.

$$
L_{s^{2}}\left(\beta_{k}\right) \geq c>0 \quad \text { and } \quad L_{g\left(t_{k}\right)}\left(\beta_{k}\right) \leq C<\infty .
$$

- Since

$$
L_{g\left(t_{k}\right)}\left(\beta_{k}\right)=\int_{\beta_{k}} \sqrt{u\left(t_{k}\right)} d_{S^{2}}
$$

the above contradicts the fact that

$$
\lim _{t \rightarrow-\infty} u(\cdot, t)=v_{\infty}^{-1}=+\infty
$$

Open problems - Mean Curvature flow

- Problem: Provide the classification of ancient convex compact solutions of the Mean Curvature flow in dimensions $n \geq 2$.
- The equivalent of the Angenent ovals in higher dimensions have been recently formally shown to exist by S. Angenent.
- The backward time limit, as $t \rightarrow-\infty$, of an n-dim Angenent oval is $\mathbb{R}^{k} \times S^{n-k}$.
- Xu-Jia Wang has classified the backward time limit of all ancient convex solutions to the n-dimensional MCF as S^{n} or $S^{k} \times R^{n-k}$ or the plane \mathbb{R}^{n} of multiplicity two.
- Open Question: Are the contracting spheres and the Angenent ovals the only ancient convex compact solutions of the n-dim MCF ?

Open problems - 3-dim Ricci flow

- Problem: Provide the classification of ancient compact solutions of the 3-dimensional Ricci flow.
- Type I: The only type I compact ancient solutions are the contracting spheres.
- Brendle, Huisken and Sinestrari have shown that ancient solutions to the 3-dim Ricci flow that satisfy a pinching curvature condition are of type I.
- The analogue to the King-Rosenau solutions in dimension $n=3$ have been shown to exist by Perelman.
- Other compact solutions in closed form have been found by V.A. Fateev in a paper dated back to 1996. These solutions are k collapsing.

Open problems - 3-dim Ricci flow

- The Perelman solutions are rotationally symmetric and type II. They are also knon-collapsing.
- The Perelman solutions are not given in closed form.
- The formal asymptotic behavior of the Perelman solutions as $t \rightarrow-\infty$ follows from a recent work of Angenent, Caputo and Knopf.
- Open Problem 1: Are all compact k non-collapsing solutions of the 3-dim Ricci flow radially symmetric ?
- Open Problem 2: Are the only radially symmetric solutions of the 3 -dim Ricci flow the Perelman solutions ?

