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Introduction to Ancient and Eternal solutions

@ We consider ancient and eternal solutions to geometric
evolution equations such as: the Curve shortening flow the
Ricci flow and the Yamabe flow.

@ Definition: A solution to a parabolic equation is called ancient
if it is defined for all time —co <t < T.

If the solution is defined for all time —co < t < +00 it is
called eternal.

@ Ancient and eternal solutions appear as blow up limits near a
singularity.

@ An ancient solution is typically the blow up limit of a type |
singularity, while an eternal solution is the blow up limit of a
type Il singularity.

@ The classification of ancient and eternal solutions often plays
a crucial role in understanding the singularities of the flow.
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Outline of the talk and main results

@ We will first discuss the classification of ancient solutions to
the curve shortening flow and the Ricci flow on surfaces.
This is joint work with R. Hamilton and N. Sesum.

@ CSF: Let 'y be an ancient family of closed convex curves
embedded in R? which evolve by the curve shortening flow
and exist for all time —co <t < T.

We show that: ['; is either a family of contracting circles
(type I) or a family of evolving Angenent ovals (type II).

e RF: Let g(-, t) be an ancient solution of the Ricci flow on a
compact surface that exists for all time —co <t < T.

We show that: g(+, t) is either a family of contracting spheres
(type 1) or one of the King-Rosenau solutions (type Il).
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The curve shortening flow

@ Let ['; be a family of closed curves which is an embedded
solution to the CSF, i.e. the embedding F : I'; — R? satisfies
gF
at 7

with s the curvature of the curve and v the outer normal.

e Gage and Hamilton: if ['g is convex, then the CSF shrinks I';
to a round point.

o Grayson: if Iy is any embedded curve in R?, then the
solution 'y to the CSF does not develop singularities before it
becomes strictly convex.

@ We assume from now on that [ is an ancient convex solution
to the CSF which defined on / = (—o0,0) and shrinks to a
point at T = 0.
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The evolution of the curvature

@ The curvature « of '; evolves, in terms of its arc-length s, by

3
Kt = Rgs + K™

e If 0 is the angle between the tangent vector of 'y and the
x-axis, then on convex curves one can express x as a function

of # and compute its evolution

Kt = /<;2 Koo + /@3.
@ We introduce the pressure function p = k2 which evolves by
1
Pt = P Pgo — §P5 +2p°

@ We say that I'; is type | if

sup  |t|p(0,t) < 0.
rtX(—OO7—1]

Otherwise we say that I'; is of type Il.
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Examples and the Result

e Example of a type | solution (contracting circles):

p(9, t) = 2(—t),

e Example of a type Il solution (Angenent ovals):

- 2
p(@, t) = >\(1—762>‘t — Sin (0‘1"7)), t < 0

with parameters A > 0 and ~.
As t — —oo the Angenent ovals look like two grim reapers
glued together.

@ Theorem: The only ancient convex solutions to the CSF are
the contracting spheres or the Angenent ovals.

@ Open Question: |s the convexity assumption necessary ?
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Sketch of proof - Monotone functional

e We will introduce a monotone functional /(t) which depends
on our solution and analyze its behavior
as t — —oo and as t — 0 (vanishing time).

@ Set a(f,t) := py(f,t). Then, « satisfies:
ar = p(agy +4a).

@ We introduce the functional

27
I(a) = /0 (02 — 402) db.

@ We have

d 27 a2
—1 =7 —Ldo<o.
< (a() /O £ 49 <0

@ In particular: limy—_ [(c)(t) exists or it is +o0.
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Sketch of proof - Classification of limits

@ We show that

lim I(a(t)) =0 and lim I(a(t)) =0.

t—0 t——o00

@ Since or
d T o

— =2 —tdo <
Flae)=—2 [ Sar<o

we conclude that /(«(t)) = 0.
@ This implies that o = 0. Hence agy + 4a = 0.

@ Solving in @ gives: a := py = a(t) cos26 + b(t)sin20 and
plugging back to the equation we conclude

1 1 i
p(f,t) = o p(0,t) = )\(1_762” —sin“(6 +7)).
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Sketch of proof - lim;_ /(a(t)) =0

@ Theorem (Gage - Hamilton) If Ty is a closed convex curve
embedded in the plane R?, the curve shortening flow shrinks
s to a point in a circular manner. Moreover, the curvature &
(and all the derivatives) of the rescaled flow converge to
Rk = 1 exponentially.

@ Recalling that o := py = (k2)g we show that

27
lim /(t) = lim / (a3 —4a%)dh =0
0

t—0 t—0

by refining the above convergence result.

@ Combining the above concluded the proof of our result.
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Sketch of proof - lim;_._ . I(«(t)) <0

@ We recall that the pressure p satisfies p; = p pgg — %pg 1D e
and also that p; > 0 (Harnack estimate for ancient solutions).

@ A direct calculation shows that

2
Py 2
£, < + 4
<2P> . = PG(pG)GO Po

@ Integration by parts gives

LAY /277(— 2 4 4p2)d = —I(a(t))
dt Jo 20" " )y Pao Po = 0
@ On the other hand, from the inequality p; > 0 we obtain
2w p2 27
/ ‘9d0§2/ pdd < C
o 2p 0

@ Combining the above gives
lim /(a(t)) <0.

t——0o0
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Conclusion

o We set (0, t) := py(0,t) and showed that « satisfies:
ar = p(agy +4a).

@ We introduced the functional /() = 027r(o¢§ — 40?) df and
showed that

d 27 042
—I(a(t)) = =2 —tdo<o.
Sla() =2 [ Sap<
@ We showed that

lim I(a(t))=0 and lim /(a(t)) =0.

t—0 t——o0
@ Hence a; = 0, implying ayg + 4a = 0.
@ Recalling that a = pg and using the equation we conclude

1 1 L,
p(0,t) = o p(0,t) = /\(m —sin*(6 +7)).
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Ancient solutions of the Ricci flow on S2

@ Consider an ancient solution of the Ricci flow

0gij
RF L = 2R;
( ) ot y

on 5?2 that exists for all time —oo < t < T and becomes
singular at time T.

@ In dim 2, we have R = %Rg,-j, where R is the scalar
curvature.

o B. Chow, R. Hamilton: After re-normalization, the metric
becomes spherical at t=T.

® Choose a parametrization g, = di)? + cos® 1) df? of the
limiting spherical metric and parametrize the (RF) by this, i.e.
we write g(-, t) = u(-,t) g,
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The equations for the conformal factor in different

coordinates

o If gj = ug,,, then it was first observed by Angenent and L.F.
Wu that the (RF) becomes equivalent to

ur=A,logu—2, on 52 x (o0, T).

@ In Euclidean and Cylindrical coordinates where
gi=10g,.= Elgcy, and

i(s,0,t) = r’u(r,0,t), s=logr
we have
u; = Aloga, on R? x (—oo, T)
and
oy =A_, log, on R x [0,27] x (=00, T)
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The equation for the pressure

o We have just seen that if g(-, t) = u(-, t) g,, then the (RF)
becomes equivalent to:

uy = Agelogu —2, on S% x (—oo, T).

@ Assume from now on that 7T = 0.

e It is natural to consider the pressure function v = u~! which
evolves by

(PE) Ve =VvA,v— IVv|? +2v2.

e Example of a type | solution (contracting spheres):

v(v,0,t) = 2(it)
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The King-Rosenau solutions

e We look for explicit ancient solutions gj; = i g, of the (RF)
which become singular at time T = 0.

e J.R. King (1993) looked for radial solutions of equation (LFD)
where the pressure function v := ! is a polynomial function
in r := |x| with coefficients depending on t.

@ A direct calculation shows that

v(x,t) = a(t) + 2 b(t) |x|*> + a(t) |x|*
where either a(t) = b(t) (contracting spheres ) or

a(t) = —gcsch(4,ut), b(t) = —g coth(4ut), u> 0.

@ These solutions were independently discovered by P. Rosenau.

@ The King-Rosenau solutions are not self-similar. As t — —o0
they look like two cigar (Barenblatt self similar) solutions
glued together.
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The classification result

Theorem: (D., R. Hamilton, N. Sesum)

An ancient solution to the (RF) on S is either one of the
contracting spheres or one of the King-Rosenau solutions.

Sketch of proof:

We recall that if g(-, t) = u(-, t) g, is the evolving metric, then
the pressure v = u~?! satisfies:

vi=vA,v— IVv[2+2v2 =Rv >0
@ We show, by establishing sharp a'priori derivative estimates,
that v(-, t) & v, as t — —oo, forall a < 1.
@ Via a suitable Lyapunov functional we show that
ffee = t_lir_rloo R(-,t)=0 a.e. on S?

and
Vo A,v, — Vv [?+2v2 =0 ae. onS?
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Sketch of proof - Continuation

@ We next classify the steady states v which satisfy
Vo AV, — Vv > +2v2 =0.

Main Step: We show that v has at most two zeros.
We conclude that

v (,6) = C cos? 1), for C>0
namely that the pointwise limit as t — —oo is a cylinder.
o If C =0, then v must be a family of contracting spheres.

e If C > 0, then v must be one of the King-Rosenau solutions.
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Lyapunov functional and convergence as t — —o0

o We recall that the pressure v = u™?! satisfies:
(PE)  vi=vA,v—|Vv+2v*=Rv>0.

Hence, the limit v := lims—,_ v(-, t) exists and is bounded.
Moreover, by a priori estimates:

Cl,a
v(,t) = Voo, ast — —oo, Va<Ll

@ We introduce the Lyapunov functional:

J(t):/n <‘VVV’2—4V> da

and show that —C < J(t) <0 (for all t < tp < 0) and

V2
—J )= —0 éd /’;'ww<a
Sn n
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Lyapunov functional and convergence as t — —o0

@ We have just seen that —C < J(t) <0 and

2
—J )=-2 | ng / WV‘;' ve da< 0.

@ Integrating in time, yields (for any 7 < 0)

T \V4 2
/ ng +/ / "/‘/2‘th3<00.
Sn —00 n

@ Since and v; = Rv > 0, it follows that

V2
I|m|nf/ (-, t)da=0.

t——o0 Sn V2

e We conclude that the limit v, is a C1® weak solution of the
steady state equation Ve, A, Voo — [Vveo|* +2v3, = 0.
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Classification of backward limits

@ We have just seen that voo (1), 0) := limi—_oo v(?),0,t) is a
CL® weak solution of the steady state equation

Voo A, Voo — |VVeo|® +2v2, = 0.
@ Theorem: There exists a conformal change of S? in which

Voo (1), 0) == lim _v(1,0,1) = C cos?p, C>0

and the convergence is in C1%(52) N C>°(S52\{poles}).

@ Main Step: Either v__ =0 or v, has at most two zeros.
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Sketch of the proof of the Main step

@ Main Step: Either v, =0 or v has at most two zeros.

o We express gjj = Ui g,,. and recall that for each t, (-, t) is a
solution of the elliptic equation

—Alogu = Ru, on R?.

@ Recall that Ry, =0 a.e.

@ Basic Lemma: Let 6 > 0 be a given small number. If for some
t <tg, p<1andx € R? with |x| < ro, we have

/ Ra(-,t)dx <4m —2§
Bp(x0)

then:  supg ,(x) u(-, t) < C(ro, p,9).
@ Since fR2 Ra(x, t) dx = 87, U := limi—,_oo (-, t) is equal to

infinity at most two points. Equivalently, v._ := t ! has at
most two zeros.
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The proof of the crucial L>* bound

@ The proof of this L° bound is inspired by a work of Brezis and
Merle (1991). In particular we use the following inequality:

o Theorem (Brezis-Merle) Assume that Q C R? is a bounded
domain and let h be a solution of

—Ah = f(x) in Q,
u=20 on 09,

with f € L1(Q). Then, for every § € (0,47) we have

(4W;6)|h()()‘ 472
/e I HLl(Q) dx S T(dlamQ)z
Q

@ We apply the above inequality to h := Iog u, f=—Ruwand
Q = B,(x0) to show that if ||f]| , <4m—6, then log @ is

bounded in B, ,(xo).

L1(Bp(x
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Classification of backward limits

@ We will now conclude that

Voo (1, 0) 1= lim _v(1,0,t) = C cos’1p, C > 0.

@ Assume that v, is not identically zero.

@ Choose a conformal change of S? which brings the two
possible zeros of v, to two antipodal poles S, N on S2.

@ Perform Mercator's projection to map S2\ {S, N} onto a
cylinder C and set (s, 0,t) = v(¢,0, t) cosh®s.
o We have

lim 0(s,0,t) = Voo(s,0) := vio (10, ) cosh?®s > 0

t——o0

uniformly on compact subsets of R x [0, 27].

@ The limit V4, satisfies Acy,\A/OC = 0. We conclude that in our
case Vs, = C, for some C >0, i.e. voo(2,0) = C cos? 1.
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The King-Rosenau solutions

o Assuming that vo.(1,0) = C cos®1, with C > 0, we will
show that v(-, t) is one of the King-Rosenau solutions.

@ We switch to plane coordinates, expressing
g =vlge =v1(dx®+ dy?).
@ To capture the King-Rosenau solutions we consider the scaling
invariant quantity

2

Q(x, ¥, t) = ¥ [ (Vsoox — 30y ) + (Vyy — 30 )°]-

@ We observe that @ = 0 on all three the King-Rosenau
solutions, the cigar solutions and the cylinder solutions.

@ We will show that @ = 0 and conclude that v is one of the
King-Rosenau solutions.
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The King-Rosenau solutions

To establish that @ = 0 we proceed as follows:

o We first show that Q(t) is well defined on R? and that

Qmax(t) = sup Q(X, t)
]R2
exists and is finite for all t.
@ We then show that Qmax(t) is decreasing in t.
e We also show that lim;—,_~ Qmax(t) = 0.

e We conclude that Q(-,t) = 0, for all t.

Panagiota Daskalopoulos Ancient solutions to Geometric Evolution Equations - Part |



The King-Rosenau solutions

@ To establish that
~|I>Too Qmax(t) =0

@

we use the fact that the only possible backward geometric
limits are the cigar solutions or the cylinders.

@ The proof involves a rather shuttle geometric argument by
contradiction.

@ To show that Qmax(t) is decreasing in t one considers the

evolution equation of Q(-, t) and computes (after a long
calculation done with mathematica !) that Q satisfies

Q:—vAQ <0, on R? x (—00,0).

Then you apply the maximum principle.
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The case when the backward limit v,, =0

Proposition: If veo :=limi_o v(:, t) =0, then v(v),0,t) = 2(£r)
(contracting spheres).
@ Any simple closed curve v with length L(~), divides the

surface into two regions, with areas A;(vy) and Ax(y). We
define the isoperimetric ratio

1 1 1
I(t) = o ”J/fL2(A1 Az) <1.
@ It is well known that / = 1 iff the surface is a sphere.
@ Hamilton computed that under the Ricci flow:
r(t) > 41 (A2 + A3)
A1Ax(A1 + A2)

@ Since A; + Ay = 8rlt| and A% + A% > 2A1 A5, we conclude
the differential inequality

1(1—1%).

/ 1 2
I(t) > — 1(1—1?).
|t]
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The case when the backward limit v,, =0

@ We argue by contradiction to show that /(tp) = 1.
o If I(tp) < 1, for some tg < 0, it follows from the ODE that :

I(t) < T’ Vt < tg < 0.

@ We show that: 3t, | —oo and curves (3 € S? s.t.
Ls2(Bk) > c>0 and Lg)(Bk) < C < oo.
@ Since
s((80) = [Vl ds:
the above contradicts the fact that

lim u(-,t) = v = +oo.
t——o0
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Open problems - Mean Curvature flow

@ Problem: Provide the classification of ancient convex compact
solutions of the Mean Curvature flow in dimensions n > 2.

@ The equivalent of the Angenent ovals in higher dimensions
have been recently formally shown to exist by S. Angenent.

@ The backward time limit, as t — —o0, of an n-dim Angenent
oval is Rk x §n—k,

@ Xu-Jia Wang has classified the backward time limit of all
ancient convex solutions to the n-dimensional MCF as S” or
Sk x R"k or the plane R" of multiplicity two.

@ Open Question: Are the contracting spheres and the
Angenent ovals the only ancient convex compact solutions of
the n-dim MCF ?

Panagiota Daskalopoulos Ancient solutions to Geometric Evolution Equations - Part |



Open problems - 3-dim Ricci flow

@ Problem: Provide the classification of ancient compact
solutions of the 3-dimensional Ricci flow.

@ Type |I: The only type | compact ancient solutions are the
contracting spheres.

@ Brendle, Huisken and Sinestrari have shown that ancient
solutions to the 3-dim Ricci flow that satisfy a pinching
curvature condition are of type I.

@ The analogue to the King-Rosenau solutions in dimension
n = 3 have been shown to exist by Perelman.

@ Other compact solutions in closed form have been found by
V.A. Fateev in a paper dated back to 1996. These solutions
are k collapsing.
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Open problems - 3-dim Ricci flow

@ The Perelman solutions are rotationally symmetric and type II.
They are also k non-collapsing.

@ The Perelman solutions are not given in closed form.

@ The formal asymptotic behavior of the Perelman solutions as
t — —oo follows from a recent work of Angenent, Caputo and
Knopf.

@ Open Problem 1: Are all compact k non-collapsing solutions
of the 3-dim Ricci flow radially symmetric 7

@ Open Problem 2: Are the only radially symmetric solutions of
the 3-dim Ricci flow the Perelman solutions ?
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