
Part 1
Introduction

Degenerate Diffusion and Free-boundaries

Panagiota Daskalopoulos

Columbia University

De Giorgi Center - Pisa
June 2012

Panagiota Daskalopoulos Part 1 Introduction Degenerate Diffusion and Free-boundaries



Introduction

We will discuss, in these lectures, certain geometric and
analytical aspects of degenerate and singular diffusion.

Models of degenerate diffusion include the Porous medium
equation, the Gauss curvature flow and the Harmonic mean
curvature flow.

Models of singular diffusion include the Curve shortening flow,
the Ricci flow on surfaces and the Yamabe flow.

Emphasis will be given to the optimal regularity of solutions
to degenerate diffusion and free-boundaries via sharp a priori
estimates, to the analysis of solutions to geometric flows near
singularities and to the classification of global solutions
(ancient or eternal).
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The Heat Equation

The simplest model of diffusion is the familiar heat equation:

ut = ∆u, (x , t) ∈ Ω× [0,T ], Ω ⊂ Rn

(u is the density of heat, chemical concentration etc.)

Fundamental properties of the Heat equation:

Smoothing Effect: Solutions become instantly smooth, at
time t > 0.

Infinite Speed of Propagation: Solutions with non-negative
compactly supported initial data u(·, 0), become instantly
strictly positive, at time t > 0.

The Fundamental Solution:

Φ(x , t) =
1

(4πt)n/2
e−
|x|2
4t , t > 0.
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A basic model of non-linear diffusion

We consider the simplest model of quasilinear diffusion:

(∗) ut = ∆um = div (m um−1∇u), u ≥ 0

for various values exponents m ∈ R.

Porous medium equation m > 1:
The diffusivity D(u) = m um−1 ↓ 0, as u ↓ 0. (∗) becomes
degenerate at u = 0, resulting to finite speed of propagation
(Slow diffusion).

Fast Diffusion 0 ≤ m < 1:
The diffusivity D(u) = m um−1 ↑ +∞, as u ↓ 0. (∗) becomes
singular at u = 0, resulting to Fast diffusion.

Ultra-Fast Diffusion m < 0:
When m < 0 we have ultra-fast diffusion with new interesting
phenomena for example instant vanishing in some cases.

Equation (∗) appears in many physical applications and in
geometry (Ricci flow on surfaces and Yamabe flow).
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Contraction of hyper-surfaces by functions of their
principal curvatures

Consider the evolution of a hyper-surface Σn in Rn+1 by the flow

∂P

∂t
= σN

where P is the position vector, N is a choice unit normal, and the
speed σ is a smooth function of the principal curvatures λi of Σ.

Examples

MCF: σ = H = λ1 + · · ·+ λn

IMCF: σ = − 1
H = − 1

λ1+···+λn

GCF: σ = K = λ1 · · ·λn
GCFα: σ = Kα = (λ1 · · ·λn)α, 0 < α <∞.

HMCF: σ = 1
λ−1

1 +...+λ−1
n
.
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Evolution Equations for Curvature flows

CSF: Motion of a plane curve y = u(x , t) by its Curvature

ut =
uxx

1 + u2
x

.

MCF: Motion of a surface z = u(x , y , t) in R3 by its Mean
Curvature

ut =
(1 + u2

y )uxx − 2uxuyuxy + (1 + u2
x )uyy

1 + |Du|2
.

GCF: Motion of a surface y = u(x , y , t) in R3 by its Gaussian
Curvature

ut =
det D2u

(1 + |Du|2)3/2
.

It resembles the evolution Monge-Ampére equation.
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Evolution Equations for Curvature flows

HMCF: Motion of a surface y = u(x , y , t) in R3 by its
Harmonic Mean Curvature

ut =
det D2u

(1 + u2
y )uxx − 2uxuyuxy + (1 + u2

x )uyy
.

Remarks:

The CSF and MCF are strictly parabolic and quasi-linear.

The GCF and HMCF are fully-nonlinear.

The GCF and HMCF are only weakly parabolic. They become
degenerate (slow-diffusion) when the Gauss curvature K = 0.

The HMCF becomes singular (fast-diffusion) as the mean
curvature H → 0.
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The Questions - Motivation

These flows provide interesting models of non-linear diffusion
where the interplay between analytical tools and geometric
intuition lead to the development of new powerful techniques.

Many problems in image analysis use geometric flows: an image,
represented by a gray-scale density function u, can be processed to
remove noise by smoothing the level sets of u by a geometric flow.

Typical Questions

Short and long time existence and regularity

Free-boundaries

Formation of singularities

Classification of entire solutions (ancient or eternal)

Existence through the singularities

Final shape of the hyper-surface
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Outline of lectures

Part 1: Degenerate Diffusion and Free-boundary Regularity

We will discuss the optimal regularity of solutions to different
models of degenerate diffusion equations.
After a brief discussion of the free-boundary regularity to the
porous medium equation, we will discuss the regularity of
weakly convex solutions to the Gauss curvature flow and the
Harmonic mean curvature flow.
We will also discuss the free-boundary regularity.

Part 2: Singular Diffusion and Ancient solutions

After a brief introduction to singular diffusion, we will discuss
the existence, uniqueness and singularity formation in the
Ricci flow on surfaces.
The last two lectures will be devoted on new results on
ancient solutions of the the curve shortening flow, the Ricci
flow of surfaces, the Yamabe flow.
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The Porous Medium Equation

The simplest model of non-linear degenerate diffusion is the porous
medium equation:

ut = ∆um = div (m um−1∇u), m > 1.

It describes various diffusion processes, for example the flow of
gas through a porous medium, where u is the density of the
gas and v := um−1 is the pressure of the gas.

Since, the diffusivity D(u) = m um−1 ↓ 0, as u ↓ 0 the
equation becomes degenerate at u = 0, resulting to the
phenomenon of finite speed of propagation.

The Barenblatt solution: U(x , t) = t−λ
(

C − k |x |
2

t2µ

) 1
m−1

+
with

λ, µ, k > 0. It plays the role of the fundamental solution.
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The Barenblatt Solution

0 < t1 < t2 < t3

-

6 z

t1

t2

t3

x
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Finite Speed of propagation

The Barenblatt solution shows that solutions to the p.m.e have the
following properties:

Finite speed of propagation: If the initial data u0 has compact
support, then the solution u(·, t) will have compact support at
all times t.

Free-boundaries: The interface Γ = ∂(suppu) behaves like a
free-boundary propagating with finite speed.

Solutions are not smooth: Solutions with compact support are
only of class Cα near the interface.

Weak solutions: We say that u ≥ 0 is a weak solution of the
equation ut = ∆um in QT := Ω× (0,T ), if it is continuous
on QT and satisfies the equations in the distributional sense.
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Scaling

Because it is nonlinear, the equation

(∗) ut = ∆um, m 6= 1

has rich scaling properties.

If u is a solution of (∗), then

v(x , t) :=
u(αx , βt)

γ

is also a solution of (PM) if and only if

γ =
(α2

β

)1/(m−1)
.
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The Aronson-Bénilan inequality

Aronson-Bénilan Inequality: Every solution u to the p.m.e. satisfies
the differential inequality

(∗) ut ≥ −
k u

t
, λ =

1

(m − 1) + 2
n

.

The pressure v := m
m−1 um−1 which evolves by the equation

vt = (m − 1) v ∆v + |∇v |2

satisfies the sharp differential inequality

(∗∗) ∆v ≥ −λ
t
.

Remark: The Aronson-Bénilan (∗) inequality follows from (∗∗).
The differential inequality (∗∗) becomes an equality when v is the
Barenblatt solution.
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The Li-Yau type Harnack inequality

The Aronson-Bénilan inequality ∆v ≥ −λ
t and the equation

for v imply the Li-Yau type differential inequality:

vt + (m − 1)λ
v

t
≥ |∇v |2.

Integrating this inequality on optimal paths gives the following
Harnack Inequality due to Auchmuty-Bao and Hamilton:

v(x1, t1) ≤
(

t2

t1

)µ [
v(x2, t2) +

δ

4

|x2 − x1|2

tδ2 − tδ1
t−µ2

]
if 0 < t1 < t2, with 0 < µ, λ < 1 and δ > 0.

Application: If v(0,T ) <∞, then for all 0 < t < T − ε we
have:

v(x , t) ≤ t−µ (Tµ v(0,T ) + C (n,m, ε) |x |2)

i.e. the pressure v grows at most quadratically as |x | → ∞.
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The Cauchy problem with general initial data

Let u ≥ 0 be a weak solution of ut = ∆um on Rn × (0,T ].

The initial trace µ0 exists; there exists a Borel measure µ such
that

lim
t↓0

u(·, t) = µ0 in D ′(Rn)

and satisfies the growth condition

(∗) sup
R>1

1

Rn+2/(m−1)

∫
|x |<R

dµ0 <∞.

The trace µ0 determines the solution uniquely.

For every measure µ0 on Rn satisfying (∗) there exists a
continuous weak solution u of the p.m.e. with trace µ0.

All solutions satisfy the estimate u(x , t) ≤ Ct(u) |x |2/(m−1), as
|x | → ∞.
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The regularity of solutions

Assume that u is a continuous weak solution of equation

ut = ∆um, m > 1 on Q := Bρ(x0)× (t1, t2).

Remark: It follows from parabolic regularity theory that if
u > 0 in a parabolic domain Q, then u ∈ C∞(Q).

Proof: If 0 < λ ≤ u ≤ Λ in Q, then ut = div (m um−1∇u) is
strictly parabolic with bounded measurable coefficients.

It follows from the Krylov-Safonov estimate that u ∈ Cγ , for
some γ > 0, hence D(u) := m um−1 ∈ Cα.

We conclude that from the Schauder estimate that u ∈ C 2+α

and by repeating then same estimate we obtain that u ∈ C∞.
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The regularity of solutions

Question: What is the optimal regularity of the solution u ?

Caffarelli and Friedman: The solution u is of class Cα, for
some α > 0.

This result is, in some sense, optimal: The Barenblatt solution

U(x , t) = t−λ
(

C − k |x |
2

t2µ

) 1
m−1

+
with λ, µ, k > 0 is only of

class Cα near the interface u = 0.

Question: Is it true that um−1 ∈ C 0,1 ?
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The regularity of the free-boundary

Assume that the initial data u0 has compact support and let u
be the unique solution of

ut = ∆um in Rn × (0,∞), u(·, t) = u0.

Question: What is the optimal regularity of the free-boundary
Γ := ∂(suppu) and the solution u up to the free-boundary ?

Caffarelli-Friedman: The free-boundary is always Cα.

Caffarelli-Vazquez-Wolanski: The free-boundary is of class
C 1+α, for t ≥ t0 with t0 sufficiently large.

D.-Hamilton: Under certain non-degeneracy conditions the
free-boundary is C∞ smooth for 0 < t < τ0.

Koch: The free-boundary is of class C∞, for t ≥ t0 with t0

sufficiently large.
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The equation for the pressure

Consider the Cauchy problem for the p.m.e:{
ut = ∆um in Rn × (0,T )

u(·, 0) = u0 on Rn

with u0 ≥ 0 and compactly supported. It is more natural to
consider the pressure v = m

m−1 um−1 which satisfies

(∗)

{
vt = (m − 1) v ∆v + |∇v |2 in Rn × (0,T )

v(·, 0) = v0 in Rn.

Our goal is to prove the short time existence of a solution v of (∗)
which is C∞ smooth up to the interface Γ = ∂(supp v). In
particular, the free-boundary Γ will be smooth.
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Short time C∞ regularity

Non-degeneracy Condition: We will assume that the initial pressure
v0 satisfies:

(∗∗) |∇v0| ≥ c0 > 0, at suppv0

which implies that the free-boundary will start moving at t > 0.

Theorem (Short time Regularity) (D., Hamilton)
Assume that at t = 0, the pressure v0 ∈ C 2+α

s and satisfies (∗∗).
Then, there exists τ0 > 0 and a unique solution v of the Cauchy
problem (∗) on Rn × [0, τ0] which is smooth up to the interface Γ.
In particular, the interface Γ is smooth.

Remark: The space C 2+α
s is Hölder space for second derivatives

that it is scaled with respect to an appropriate singular metric s.
This is necessary because of the degeneracy of our equation.
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Short time Regularity - Sketch of proof for dimension n = 2

To simplify the notation we assume that we are in dimension
n = 2.

Coordinate change: We perform a change of coordinates
which fixes the free-boundary: Let P0 ∈ Γ(t) s.t.

vx > 0 and vy = 0, at P0.

Solve z = v(x , y , t) near P0 w.r to x = h(z , y , t) to transform
the free-boundary v = 0 into the fixed boundary z = 0.

The function h evolves by the quasi-linear, degenerate
equation

(#) ht = (m − 1) z
(

1+h2
y

h2
z

hzz − 2hy
hz

hzy + hyy

)
− 1+h2

y

hz

Outline: Construct a sufficiently smooth solution of (#) via
the Inverse function Theorem between appropriate Hölder
spaces, scaled according to a singular metric.
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The Model Equation

Our problem is modeled on the equation

ht = z (hzz + hyy ) + ν hz , on z > 0

with ν > 0.
The diffusion is governed by the cycloidal metric

ds2 =
dz2 + dy 2

z
, on z > 0.

Its geodesics are cycloid curves.
We define the distance function according to this metric:

s̄((z1, y1), (z2, y2)) =
|z1 − z2|+ |y1 − y2|

√
z1 +

√
z2 +

√
|y1 − y2|

.

The parabolic distance is defined as:

s((Q1, t1), (Q2, t2)) = s̄(Q1,Q2) +
√
|t1 − t2|.
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Hölder Spaces

Let Cα
s denote the space of Hölder continuous functions h

with respect to the parabolic distance function s.

C 2+α
s : h, ht , hz , hy , z hzz , z hzy , z hyy ∈ Cα

s .

Theorem (Schauder Estimate) Assume that h solves

ht = z (hzz + hyy ) + ν hz + g , on Q2

with ν > 0 and Qr = {0 ≤ z ≤ r , |y | ≤ r , t0 − r ≤ t ≤ t0}.
Then,

‖h‖C2+α
s (Q1) ≤ C

{
‖h‖C0

s (Q2) + ‖g‖Cαs (Q2)

}
.

Proof: We prove the Schauder estimate using the method of
approximation by polynomials introduced by L. Caffarelli and
l. Wang.
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Short time regularity - summary

Using the Schauder estimate, we construct a sufficiently
smooth solution of (∗) via the Inverse function Theorem
between the Hölder spaces Cα

s and C 2+α
s , which are scaled

according to the singular metric s.

Once we have a C 2+α
s solution we can show that the solution

v is C∞ smooth. Hence, the free-boundary Γ ∈ C∞.

Remark: You actually need a global change of coordinates
which transforms the free-boundary problem to a fixed
boundary problem for a non-linear degenerate equation.
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Long time regularity

It is well known that the free-boundary will not remain
smooth (in general) for all time. Advancing free-boundaries
may hit each other creating singularities.

Koch: (Long time regularity) Under certain natural initial
conditions, the pressure v will be become smooth up to the
interface for t ≥ T0, with T0 sufficiently large.

Question: Under what geometric conditions the interface will
become smooth and remain so at all time ?

Theorem (All time Regularity) (D., Hamilton and Lee)
If the initial pressure v0 is root concave, then the pressure v
will be smooth and root-concave at all times t > 0. In
particular, the interface will remain convex and smooth.
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The Gauss Curvature Flow

Consider the deformation of a convex compact surface Σn in Rn+1

by its Gauss curvature K :

∂P

∂t
= K ·N, K = λ1 · · ·λn.

1974 Firey: The GCF models the wearing process of tumbling
stones subjected to collisions from all directions with uniform
frequency. It shrinks strictly convex, centrally symmetric
surfaces to round points.

Tso: Existence and uniqueness for strictly convex and smooth
intial data up to the time T when the surface Σn shrinks to a
point.

Andrews: Firey’s Conjecture: the GCF shrinks strictly convex
surfaces Σ2 in R3 to spherical points.
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The Regularity of solutions to GCF

If z = u(x , t) defines Σn locally, then u evolves by the PDE

ut =
det D2u

(1 + |Du|2)
n+1

2

.

A strictly convex surface evolving by the GCF remains strictly
convex and hence smooth up to its collapsing time T .

The problem of the regularity of solutions in the weakly convex
case is a difficult question. It is related to the regularity of
solutions of the evolution Monge-Ampére equation

ut = det D2u.

Question: What is the optimal regularity of weakly convex
solutions to the Gauss Curvature flow ?
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The Regularity of solutions to GCF -Known Results

Hamilton: Convex surfaces with at most one vanishing
principal curvature, will instantly become strictly convex and
hence smooth.

Chopp, Evans and Ishii: If Σn is C 3,1 at a point P0 and two or
more principal curvatures vanish at P0, then P0 will not move
for some time τ > 0.

Andrews: A surface Σ2 in R3 evolving by the GCF is always
C 1,1 on 0 < t < T and smooth on t0 ≤ t < T , for some
t0 > 0. This is the optimal regularity in dimension n = 2.

Remark: The regularity of solutions Σn in dimensions n ≥ 3
poses a much harder question.

Hamilton: If a surface Σ2 in R3 has flat sides, then the flat
sides will persist for some time.
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Surfaces with Flat Sides

Consider a two-dimensional surface Σt = (Σ1)t ∪ (Σ2)t in R3 with
(Σ1)t flat and (Σ2)t strictly convex.

Hamilton: The flat side (Σ1)t will shrink with finite speed.

The curve Γt = (Σ1)t ∩ (Σ2)t behaves like a free-boundary
propagating with finite speed. It will shrink to a point before
the surface Σt does.

Expressing the lower part of Σt as z = u(x , y , t), we find the
u evolves by

(∗1) ut =
det D2u

(1 + |Du|2)3/2

with u = 0, at (Σ1)t and u > 0, on (Σ2)t .

The equation becomes degenerate at u = 0.
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Rotationally Symmetric Examples

If z = u(r , t) is a rotationally symmetric solution of the
(GCF), then u satifies by

ut =
ur urr

r (1 + u2
r )

3
2

.

Model Equation (near r ∼ 1):

ut = ur urr .

Specific solutions of the model equation:

φ1 = (r + 2t − 1)2
+

and

φ2 =
(r − 1)3

6 (T − t)
.

Conclusion: We expect that u vanishes quadratically at a
moving the free-boundary.
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The pressure function

Since we expect quadratic behavior near z = 0 we introduce
the pressure function g =

√
2u and compute its evolution:

(∗2) gt =
g det D2g + g 2

ν gττ
(1 + g 2 |Dg |2)3/2

.

(∗2) is a fully-nonlinear equation which becomes degenerate at
the boundary of the flat side Γt = (Σ1)t ∩ (Σ2)t .

We assume that the initial surface satisfies the
non-degeneracy condition

(#) gν = |Dg | ≥ c0 > 0 and gττ ≥ c0 > 0, at Γ0.

with ν = inner normal to Γ0 and τ = tangental to Γ0.

Panagiota Daskalopoulos Part 1 Introduction Degenerate Diffusion and Free-boundaries



GCF with flat sides -The Results

Short time Regularity (D., Hamilton):
If at t = 0, g =

√
2u ∈ C 2+α

s and satisfies (#), then there
exists τ0 > 0 for which the solution g to the GCF is smooth
(up to the interface Γt) on 0 < t ≤ τ0. In particular, the
free-boundary Γt is smooth.

Long time Regularity (D., Lee):
The pressure g will remain smooth (up to the interface) up to
the extinction time Tc of the flat side.

Regularity at the Extinction time (D., Lee): At t = Tc the
surface Σt is at most of class C 2,β, β < 1.
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Short time Existence - Outline of the proof

Pressure Equation: We recall that the pressure p satisfies

(∗2) gt =
g det D2g + g 2

ν gττ
(1 + g 2 |Dg |2)3/2

.

Coordinate change: Let P0 ∈ Γ(t) s.t. gx > 0 and gy = 0 at
P0. Solve z = g(x , y , t) near P0 w.r to x = h(z , y , t) to
transform the f.b. g = 0 into the fixed boundary z = 0.

h evolves by the fully-nonlinear degenerate equation:

(∗3) ht =
−z detD2h+hzhyy
(z2+h2

z+z2h2
y )3/2 , z > 0.

Outline: We construct a sufficiently smooth solution of (∗3)
via the Inverse Function Theorem between appropriate Hölder
spaces, scaled according to a singular metric.
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The Model Equation

Our problem is modeled on the equation

ht = z hzz + hyy + ν hz , on z > 0

with ν > 0.
The diffusion is governed by the singular metric

ds2 =
dz2

z
+ dy 2, on z > 0

We define the distance function according to this metric:

s̄((z1, y1), (z2, y2)) = |
√

z1 −
√

z2|+ |y1 − y2|.

The parabolic distance is defined as:

s((Q1, t1), (Q2, t2)) = s̄(Q1,Q2) +
√
|t1 − t2|.
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Hölder Spaces

Let Cα
s denote the space of Hölder continuous functions h

with respect to the parabolic distance function s.

C 2+α
s : h, ht , hz , hy , z hzz ,

√
z hzy , hyy ∈ Cα

s .

Theorem (Schauder Estimate) Assume that h solves

ht = z hzz + hyy + ν hz + g , on Q2

with ν > 0 and Qr = {0 ≤ z ≤ r 2, |y | ≤ r , t0 − r 2 ≤ t ≤ t0}.
Then,

‖h‖C2+α
s (Q1) ≤ C

{
‖h‖C0

s (Q2) + ‖g‖Cαs (Q2)

}
.

Proof: We prove the Schauder estimate using the method of
approximation by polynomials introduced by L. Caffarelli and
l. Wang.
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Short time regularity - summary

Using the Schauder estimate, we construct a sufficiently
smooth solution of (∗) via the Inverse function Theorem
between the Hölder spaces Cα

s and C 2+α
s , which are scaled

according to the singular metric s.

Once we have a C 2+α
s solution we can show that the solution

v is C∞ smooth. Hence, the free-boundary Γ ∈ C∞.

Observation: To obtain the optimal regularity, degenerate
equations need to be scaled according to the right singular
metric.

Remark: You actually need a global change of coordinates
which transforms the free-boundary problem to a fixed
boundary problem for a non-linear degenerate equation.
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Regularity up to the extinction Tc of the flat side

Remark: By the result of Andrews the surface will become
strictly convex before it shrinks to a point.
Let us denote by Tc the extinction time of the flat side.
The Result: The solution g will remain smooth up to the
interface on 0 < t < Tc .
Main Step: The solution g is of class C 1+α

s .

Sketch of Proof: We show that h ∈ C 1+α
s : each derivative h̃

of h satisfies a degenerate equation of the form

h̃t = za11h̃zz + 2
√

za12h̃zy + a22h̃yy + b1h̃z + b2h̃y + H

with

aij =

(
−hyy

√
z hzy√

z hzy hz − z hzz

)
and

b1 = −hyy

h3
z

.
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I. A’priori Estimates

1 Ellipticity: aijξiξj ≥ λ|ξ|2 > 0, ∀ξ 6= 0.
2 L∞-Bound: |aij |+ |bi | ≤ Λ.
3 Non-degeneracy: b1 ≥ ν > 0.

Properties (1)-(3) follow from the next result which is shown by
Pogorelov type computations.

Theorem (D., Lee) Near P0 ∈ Γt , where gx > 0 and gy = 0
we have:

0 < λ ≤ det aij ∼ K
g ≤

1
λ .

and
0 < λ ≤ tr aij ∼ g 2

ν gττ + g gνν ≤ 1
λ .

Notation:
K = Gauss Curvature
ν = direction normal to the level sets of g
τ = direction tangential to the level sets of g .
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II. Hölder Continuity of solutions to degenerate equations
in non-divergence form

Theorem (D., Lee) Let h be a classical solution of equation

ht = za11hzz + 2
√

za12hzy + a22hyy + b1hz + b2hy + H

on Q2. Assume that there exist constants λ and ν such that

aijξ ξj ≥ λ|ξ|2, ∀ξ ∈ R2, |aij |+ |b| ≤
1

λ
,

b1

2a11
≥ ν.

Then, there exists α = α(λ,Λ, ν) such that

‖h‖Cαs (Q1) ≤ C
{
‖h‖C0(Q2) + ‖H‖L3

σ(Q2)

}
where dσ = z

ν
2
−1 dzdydt and

Qr = {0 ≤ z ≤ r 2, |y | ≤ r , t0 − r 2 ≤ t ≤ t0}.

Remark: The above extends the Krylov-Safonov Cα-regularity
result to the degenerate case.
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Conclusion

Combining the a-priori estimates and the Hölder Regularity result,
we conclude that:

h ∈ C 1,α
s ⇒ g ∈ C 1,α

s .

(Classical Regularity + Scaling)⇒ g ∈ C 2+α
s .

(Local Estimates)⇒ g is C∞-up to interface Γ up to the
extinction time Tc of the flat side.
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Further regularity results in dimensions n ≥ 3

Question: What is the optimal regularity of solutions to the GCF in
dimensions n ≥ 3 ?

Short time existence of solutions Σn
t to the GCF with flat

sides such that Σn
t ∈ C 1, 2

n for 0 < t < τ0.

Long time regularity (Open Problem): Is a surface Σn
t with

flat sides going to remain of class C 1, n
2 until it becomes

strictly convex ?

C 1,α-Regularity : Are solutions of the GCF (or the evolution
Monge-Ampére equation) always of class C 1,α, for α > 0 ?

Final Shape (Open Problem): What is the final spape of the
surface Σn

t as it shrinks to a point ? Does the surface become
asymptotically spherical ?
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Optimal regularity results in dimensions n ≥ 3

Theorem : (D., Savin) Solutions to the GCF in dimension n = 3
are always of class C 1,α.

Example: (D., Savin) In dimensions n ≥ 4 there exist self-similar
solutions of ut = det D2u with edges persisting.

Theorem : (D., Savin) If the initial surface is of class C 1,β, then
solutions Σn

t to the GCF for n ≥ 3 are of class C 1,α, for 0 < α ≤ β.

Remark: Same results hold for motion by Kp, p > 0 and for
viscosity solutions to

λ (det D2u)p ≤ ut ≤ Λ (det D2u)p

for 0 < λ < Λ <∞ and p > 0.

Open Problem: Is a surface Σn
t with flat sides going to remain of

class C 1, n
2 until it becomes strictly convex ?
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The Qk Curvature Flows

Consider a compact convex hypersurface Σn in Rn+1 evolving by
the Qk−flow for 1 ≤ k ≤ n

∂P

∂t
= Qk N

with speed Qk(λ) = Sk (λ)
Sk−1(λ) =

∑
λi1 ···λik∑
λi1 ···λik−1

.

Q1 = H (Mean Curvature)

Qn = 1
λ−1

1 ···λ
−1
n

(Harmonic Mean Curvature)

Andrews: Existence of smooth solutions with strictly convex
and smooth initial data up to the time T when the surface
shrinks to a point. The surface becomes spherical as t → T .

Dieter: Convex surfaces with Sk−1 > 0 become instantly
smooth.

Caputo, D., Sesum: Long time existence of C 1,1 convex
solutions (not strictly convex).
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The Harmonic Mean Curvature Flow

Consider a compact surface Σt in R3 with flat sides evolving by
the (HMCF)

∂P

∂t
= κ ·N, κ(λ1, λ2) =

λ1 λ2

λ1 + λ2
=

K

H
.

The resulting PDE is fully-nonlinear, weakly parabolic but becomes
degenerate at points where K = 0 and singular when H → 0. In
the latter case the flow is not defined.
The linearized operator L is given by

L = aik ∇i ∇ku, aik =
∂

∂hi
k

(
G

H

)
.

Notice that in geodesic coordinates around a point at which the
second fundamental form matrix A = diag(λ1, λ2) we have

(aik) = diag(
λ2

2

(λ1 + λ2)2
,

λ2
1

(λ1 + λ2)2
)
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Highly degenerate convex HMCF

Let Σt = (Σ1)t ∪ (Σ2)t in R3 with (Σ1)t flat and (Σ2)t strictly
convex. Let Γt = (Σ1)t ∩ (Σ2)t denote the interface.

Expressing the lower part of Σ as a graph z = u(x , y , t), we find
that u evolves by:

ut =
det D2u

(1 + u2
x )uyy − 2 uxuyuxy + (1 + u2

y )uxx
.

Theorem: (D., Caputo:) If Σ0 is of class C k,α, k ≥ 1, 0 < α ≤ 1
then: the HMCF admits a viscosity solution of class C k,α with
pressure smooth up to the interface Γt = (Σ1)t ∩ (Σ2)t .

The flat side persists for some positive time and the interface Γt is
smooth and evolves by the Curve Shortening Flow.
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The Qk-flow in dim n ≥ 3

In the case of a convex surface Σn in Rn+1 with flat sides evolving
by the Qk -flow

∂P

∂t
= Qk ·N, Qk =

Sk(λ)

Sk−1(λ)

then a similar result was recently shown:

Caputo, D., Sesum. Short time existence of a solution with
flat sides which is smooth up to the interface. In particular,
the interface moves by the n − 1 dimensional Qk−1 flow.

Caputo, D., Sesum: Long time existence of C 1,1 convex
solutions (not strictly convex).

Question: What is the optimal regularity of solutions ?

Question: Do solutions become strictly convex before they
shrink to a point ?
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HMCF on star-shaped surfaces with H > 0

We assume that the initial surface Σ0 is compact, star-shaped, of
class C 2,1, and has strictly positive mean curvature H > 0.
Jointly with Natasa Sesum:

Short time existence: There exists τ > 0, for which the HMCF
admits a C 2,1 solution Σt , such that H > 0 on t ∈ [0, τ).

Long time existence: Let T = A/4π, with A the initial surface
area. Then one of the following holds:

(i) H → 0 at some point P0 ∈ Σt0 , at time t0 < T , or

(ii) a C 1,1 solution to the flow exists up to T , it becomes
strictly convex at time Tc < T , and it shrinks to a point at
time T .

Question: Does H → 0 before the time T ?

On a surface of revolution with H > 0, we have H > 0 up to
T = A/4π. Hence, Σt exists up to T and shrinks to a point
at T . Moreover, Σt ∈ C∞, 0 < t < T .

Open problem: Higher dimensions.

Panagiota Daskalopoulos Part 1 Introduction Degenerate Diffusion and Free-boundaries



Closing Remarks

Degenerate equations with certain structure have smoothing
properties once their solutions are scaled with respect to the
appropriate singular metric.

As a result, one may obtain the C∞ -regularity in a number of
degenerate free-boundary problems related to curvature flows.

In other cases the solutions do not become regular and one
needs to develop more sophisticated techniques to establish
the optimal regularity of solutions or pass through their
singularities.

Open Problem: Find a flow which will take a non-convex
surface with certain geometric properties and deform it to a
smooth convex surface.
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