Dwyer-Fried invariants

Alex Suciu

Northeastern University

Minicourse on Cohomology jumping loci and homological finiteness properties

> Centro Ennio De Giorgi Pisa, Italy May 11, 2010

- Free abelian covers
- 2 The Dwyer–Fried sets
- 3 Ω-invariants and characteristic varieties
- 4 The openess question
- 5 Finiteness properties
- 6 Kollár's question

Free abelian covers

- Let X be a connected CW-complex with finite 1-skeleton, $G = \pi_1(X, x_0)$.
- Consider the connected, regular covering spaces of X, with group of deck transformations a free abelian group of fixed rank r.
- Model situation: the *r*-dimensional torus *T^r* = *K*(ℤ^r, 1) and its universal cover, ℝ^r → *T^r*, with group of deck transformations ℤ^r.
- Any epimorphism $\nu : G \twoheadrightarrow \mathbb{Z}^r$ gives rise to a \mathbb{Z}^r -cover, by pull back:

where *f* realizes ν at the level of fundamental groups.

- Note: (homotopy fiber of f) $\simeq X^{\nu}$.
- All connected, regular \mathbb{Z}^r -covers of X arise in this manner.

$$G \xrightarrow{\mathrm{ab}} G_{\mathrm{ab}} \xrightarrow{\nu_*} \mathbb{Z}^r$$
,

where ν_* may be identified with the induced homomorphism

 $f_*: H_1(X,\mathbb{Z}) \to H_1(T^r,\mathbb{Z}).$

Passing to the homomorphism in Q-homology, we see that the cover X^ν → X is determined by the kernel of

 $\nu_* \colon H_1(X, \mathbb{Q}) \to \mathbb{Q}^r.$

 Conversely, every codimension-*r* linear subspace of *H*₁(*X*, ℚ) can be realized as

 $\ker(\nu_*\colon H_1(X,\mathbb{Q})\to\mathbb{Q}^r).$

for some $\nu \colon G \twoheadrightarrow \mathbb{Z}^r$, and thus gives rise to a cover $X^{\nu} \to X$.

- Let Gr_r(H¹(X, ℚ)) be the Grassmanian of *r*-planes in the finite-dimensional, rational vector space H¹(X, ℚ).
- Using the dual map $\nu^* \colon \mathbb{Q}^r \to H^1(X, \mathbb{Q})$ instead, we obtain:

Proposition (Dwyer–Fried 1987)

The connected, regular covers of X whose group of deck transformations is free abelian of rank r are parametrized by the rational Grassmannian $Gr_r(H^1(X, \mathbb{Q}))$, via the correspondence

$$\{\mathbb{Z}^r\text{-covers }X^{\nu}\to X\}\longleftrightarrow \{r\text{-planes }P_{\nu}:=\operatorname{im}(\nu^*)\text{ in }H^1(X,\mathbb{Q})\}.$$

The Dwyer–Fried sets

Moving about the rational Grassmannian, and recording how the Betti numbers of the corresponding covers vary leads to:

Definition

The Dwyer-Fried invariants of X are the subsets

 $\Omega^i_r(X) = \big\{ P_\nu \in \operatorname{Gr}_r(H^1(X, \mathbb{Q})) \ \big| \ b_j(X^\nu) < \infty \text{ for } j \le i \big\},$

defined for all $i \ge 0$ and all r > 0, with the convention that $\Omega_r^i(X) = \emptyset$ if $r > b_1(X)$.

In particular, if $b_1(X) = 0$, then all the Ω -invariants of X are empty. For a fixed r > 0, the Dwyer–Fried invariants form a descending filtration of the Grassmanian of *r*-planes,

 $\operatorname{Gr}_r(H^1(X,\mathbb{Q})) = \Omega^0_r(X) \supseteq \Omega^1_r(X) \supseteq \Omega^2_r(X) \supseteq \cdots$

The Ω -sets are homotopy-type invariants of X:

Lemma

Suppose $X \simeq Y$. For each r > 0, there is then an isomorphism $\operatorname{Gr}_r(H^1(Y, \mathbb{Q})) \cong \operatorname{Gr}_r(H^1(X, \mathbb{Q}))$ sending each subset $\Omega_r^i(Y)$ bijectively onto $\Omega_r^i(X)$.

Proof.

- Let $f: X \to Y$ be a (cellular) homotopy equivalence.
- f^* : $H^1(Y, \mathbb{Q}) \to H^1(X, \mathbb{Q})$, defines isomorphisms f^*_r : $\operatorname{Gr}_r(H^1(Y, \mathbb{Q})) \to \operatorname{Gr}_r(H^1(X, \mathbb{Q}))$.
- It remains to show that $f_r^*(\Omega_r^i(Y)) \subseteq \Omega_r^i(X)$.
- For that, let $P \in \Omega_r^i(Y)$, and write $P = P_{\nu}$, for some $\nu : \pi_1(Y) \twoheadrightarrow \mathbb{Z}^r$. The map *f* lifts to a map $\overline{f} : X^{\nu \circ f_{\sharp}} \to Y^{\nu}$.
- Clearly, *f* is a homotopy equivalence. Thus, b_i(X^{ν∘f_β}) = b_i(Y^ν), and so f^{*}_r(P_ν) = P_{ν∘f_β} belongs to Ωⁱ_r(X).

In view of this lemma, we may extend the definition of the Ω -sets from spaces to groups.

Let *G* be a finitely-generated group. Pick a classifying space K(G, 1) with finite *k*-skeleton, for some $k \ge 1$.

Definition

The Dwyer-Fried invariants of G are the subsets

 $\Omega_r^i(G) = \Omega_r^i(K(G,1))$

of $\operatorname{Gr}_r(H^1(G, \mathbb{Q}))$, defined for all $i \ge 0$ and $r \ge 1$.

Since the homotopy type of K(G, 1) depends only G, the sets $\Omega_r^i(G)$ are well-defined group invariants.

- Especially manageable situation: r = n, where $n = b_1(X) > 0$.
- In this case, $\operatorname{Gr}_n(H^1(X, \mathbb{Q})) = \{ pt \}.$
- This single point corresponds to the maximal free abelian cover, $X^{\alpha} \rightarrow X$, where $\alpha \colon G \twoheadrightarrow G_{ab} / \operatorname{Tors}(G_{ab}) = \mathbb{Z}^{n}$.
- The sets $\Omega_n^i(X)$ are then given by

$$\Omega_n^i(X) = egin{cases} \{ ext{pt} \} & ext{if } b_j(X^lpha) < \infty ext{ for } j \leq i, \ \emptyset & ext{ otherwise.} \end{cases}$$

Both situations may occur:

Example

Let $X = S^1 \vee S^k$, for some k > 1. Then $X^{\alpha} = X^{ab}$ is homotopic to a countable wedge of *k*-spheres. Thus, $\Omega_1^i(X) = \{\text{pt}\}$ for i < k, yet $\Omega_1^i(X) = \emptyset$, for $i \ge k$.

Remark

Finiteness of the Betti numbers of a free abelian cover X^{ν} does not imply finite-generation of the integral homology groups of X^{ν} . Thus, we cannot replace the condition " $b_i(X^{\nu}) < \infty$, for $i \le q$ " by the (stronger) condition " $H_i(X^{\nu}, \mathbb{Z})$ is a finitely-generated group, for $i \le q$."

E.g., let *K* be a knot in S^3 , with complement $X = S^3 \setminus K$, infinite cyclic cover X^{ab} , and Alexander polynomial $\Delta_K \in \mathbb{Z}[t^{\pm 1}]$. Then

 $H_1(X^{\mathrm{ab}},\mathbb{Z}) = \mathbb{Z}[t^{\pm 1}]/(\Delta_{\mathcal{K}}).$

Hence, $H_1(X^{ab}, \mathbb{Q}) = \mathbb{Q}^d$, where $d = \deg \Delta_K$. Thus, $\Omega_1^1(X) = \{pt\}.$

But, if Δ_K is not monic, $H_1(X^{ab}, \mathbb{Z})$ need not be a f.g. \mathbb{Z} -module.

Example (Milnor 1968)

Let *K* be the 5₂ knot, with Alex polynomial $\Delta_K = 2t^2 - 3t + 2$. Then $H_1(X^{ab}, \mathbb{Z}) = \mathbb{Z}[1/2] \oplus \mathbb{Z}[1/2]$ is not f.g., though $H_1(X^{ab}, \mathbb{Q}) = \mathbb{Q} \oplus \mathbb{Q}$.

Ω-invariants and characteristic varieties

- Given an epimorphism ν: G → Z^r, let ν̂: Z^r → Ĝ be the induced morphism between character groups, given by ν̂(ρ)(g) = ν(ρ(g)).
- Its image, T_ν = ν̂(Z^r), is a complex algebraic subtorus of G, isomorphic to (C[×])^r.
- The following theorem was proved by Dwyer and Fried for a finite CW-complex X, using the support loci for the Alexander invariants of X. It was recast in a slightly more general context in (PS 2010), using the degree-1 characteristic varieties.

Theorem

Let X be a connected CW-complex with finite k-skeleton, $G = \pi_1(X)$. For an epimorphism $\nu : G \twoheadrightarrow \mathbb{Z}^r$, the following are equivalent:

- The vector space $\bigoplus_{i=0}^{k} H_i(X^{\nu}, \mathbb{C})$ is finite-dimensional.
- 2 The algebraic torus \mathbb{T}_{ν} intersects the variety $\mathcal{W}^{k}(X)$ in only finitely many points.

Corollary

Suppose $\mathcal{W}^{i}(X)$ is finite. Then $\Omega_{r}^{i}(X) = \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q})), \quad \forall r \leq b_{1}(X).$

Example

Let *M* be a nilmanifold. Then $\Omega_r^i(M) = \operatorname{Gr}_r(\mathbb{Q}^n)$, for all $i \ge 0$ and $r \le n = b_1(M)$.

Example

Suppose X is the complement of a knot in S^m , $m \ge 3$. Then $\Omega_1^i(X) = \{\text{pt}\}$, for all $i \ge 0$.

Corollary

Let $n = b_1(X)$. Suppose $\mathcal{W}^i(X)$ is infinite, for some i > 0. Then $\Omega_n^q(X) = \emptyset$, for all $q \ge i$. In particular, $b_j(X^{\alpha}) = \infty$, for some $j \le i$.

Example

Let S_g be a Riemann surface of genus g > 1. Then

$$\Omega^i_r(S_g) = \emptyset,$$
 for all $i, r \ge 1$
 $\Omega^n_r(S_{g_1} \times \cdots \times S_{g_n}) = \emptyset,$ for all $r \ge 1$

Example

Let $Y_m = \bigvee^m S^1$ be a wedge of m circles, m > 1. Then $\Omega_r^i(Y_m) = \emptyset$, for all $i, r \ge 1$ $\Omega_r^n(Y_{m_1} \times \cdots \times Y_{m_n}) = \emptyset$, for all $r \ge 1$

The openess question

Question

For which spaces X, and for which indices *i* and *r* are the sets $\Omega_r^i(X)$ Zariski open subsets of $\operatorname{Gr}_r(H^1(X, \mathbb{Q}))$?

Write $n = b_1(X)$. Identify $H^1(X, \mathbb{Q}) = \mathbb{Q}^n$ and $\operatorname{Gr}_1(\mathbb{Q}^n) = \mathbb{Q}\mathbb{P}^{n-1}$.

Theorem (DF 1987)

Each $\Omega_1^i(X)$ is the complement of a finite union of projective subspaces in \mathbb{QP}^{n-1} . In particular, $\Omega_1^i(X)$ is a Zariski open set in \mathbb{QP}^{n-1} .

This subspace arrangement can be understood in terms of a more general construction, introduced in (DPS 2009).

Proposition (PS 2010)

Let $X^{\nu} \to X$ be a regular \mathbb{Z} -cover, classified by $\nu : \pi_1(X) \twoheadrightarrow \mathbb{Z}$. Let $\nu^* : H^1(\mathbb{Z}, \mathbb{Z}) = \mathbb{Z} \to H^1(X, \mathbb{Z})$, and $\bar{\nu} = \nu^*(1)$. Then,

$$\sum_{i=1}^{n} b_i(X^{\nu}) < \infty \iff \bar{\nu} \notin \tau_1(\mathcal{W}^k(X)).$$

Here, if $W \subset (\mathbb{C}^{\times})^n$ is a Zariski closed set, then $\tau_1(W) := \{z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \text{ for all } \lambda \in \mathbb{C}\}.$

For r > 1, though, $\Omega_r^k(X)$ is not necessarily an open subset of $\operatorname{Gr}_r(\mathbb{Q}^n)$:

- Dwyer and Fried gave an example of a finite, 3-dimensional CW-complex for which Ω²₂(X) is *not* open.
- In (S 2010), I give examples of finitely presented (Kähler) groups G for which Ω¹₂(G) is not open.

Example (DF 1987)

• Let $Y = T^3 \vee S^2$. Then $\pi_1(Y) = H \cong \mathbb{Z}^3$, with generators x_1, x_2, x_3 .

- Let $f: S^2 \to Y$ represent the element $x_1 x_2 + 1$ of $\pi_2(Y) = \mathbb{Z}H$. Form the CW-complex $X = Y \cup_f D^3$, with $\pi_1(X) = H$ and $\pi_2(X) = \mathbb{Z}H/(x_1 - x_2 + 1)$.
- Identifying Hom $(H, \mathbb{C}) = (\mathbb{C}^{\times})^3$, we have $\mathcal{V}_1^1(X) = \{1\}$ and $\mathcal{V}_1^2(X) = \{z \in (\mathbb{C}^{\times})^3 \mid z_1 z_2 + 1 = 0\}.$
- Consider an algebraic 2-torus $T = \{z_1^{a_1} z_2^{a_2} z_3^{a_3} = 1\}$ in $(\mathbb{C}^{\times})^3$.
- Then: $T \cap \mathcal{V}_1^2(X)$ is either empty (this happens precisely when $T = \{z_1 z_2^{-1} = 1\}$ or $T = \{z_2 = 1\}$), or is 1-dimensional.
- Thus, the locus in $\operatorname{Gr}_2(\mathbb{Q}^3) = \mathbb{QP}^2$ giving rise to algebraic 2-tori in $(\mathbb{C}^{\times})^3$ having finite intersection with $\mathcal{V}_1^2(X)$ consists of 2 points.

• In particular, $\Omega_2^2(X)$ is not open in \mathbb{QP}^2 , even in the usual topology.

Finiteness properties

Let G be a group, and k a positive integer.

- *G* has property F_k if it admits a classifying space K(G, 1) with finite *k*-skeleton.
 - F₁: G is finitely generated
 - ► F₂: *G* is finitely presentable.
- *G* has property FP_k if the trivial ℤ*G*-module ℤ admits a projective ℤ*G*-resolution which is finitely generated in all dimensions up to *k*.

The following implications (none of which can be reversed) hold:

 $\begin{aligned} G \text{ is of type } \mathsf{F}_k &\Rightarrow G \text{ is of type } \mathsf{FP}_k \\ &\Rightarrow H_i(G,\mathbb{Z}) \text{ is finitely generated, for all } i \leq k \\ &\Rightarrow b_i(G) < \infty, \text{ for all } i \leq k. \end{aligned}$

Moreover, $FP_k \& F_2 \Rightarrow F_k$.

Theorem

Let G be a finitely generated group, and $\nu \colon G \to \mathbb{Z}^r$ an epimorphism, with kernel Γ . Suppose $\Omega_r^k(G) = \emptyset$, and Γ is of type F_{k-1} . Then $b_k(\Gamma) = \infty$.

Hence, $H_k(\Gamma, \mathbb{Z})$ is not finitely generated, and Γ is not of type FP_k .

Proof.

Set X = K(G, 1); then $X^{\nu} = K(\Gamma, 1)$.

Since Γ is of type F_{k-1} , we have $b_i(X^{\nu}) < \infty$ for $i \leq k-1$.

Since $\Omega_r^k(X) = \emptyset$, we must have $b_k(X^{\nu}) = \infty$.

Corollary

Let *G* be a finitely generated group, and suppose $\Omega_1^3(G) = \emptyset$. Let $\nu : G \twoheadrightarrow \mathbb{Z}$ be an epimorphism. If the group $\Gamma = \ker(\nu)$ is finitely presented, then $H_3(\Gamma, \mathbb{Z})$ is not finitely generated.

Example

- Let $Y_2 = S^1 \lor S^1$ and $X = Y_2 \times Y_2 \times Y_2$. Clearly, X is a classifying space for $G = F_2 \times F_2 \times F_2$.
- Let ν: G → Z be the homomorphism taking each standard generator to 1. Set Γ = ker(ν).
- Stallings (1963):

 $\Gamma = \langle a, b, c, x, y \mid [x, a], [y, a], [x, b], [y, b], [a^{-1}x, c], [a^{-1}y, c], [b^{-1}a, c] \rangle$

Stallings showed, via a Mayer-Vietoris argument, that $H_3(\Gamma, \mathbb{Z})$ is not finitely generated.

• Alternate explanation: We have $\Omega_1^3(X) = \emptyset$. Thus, the desired conclusion follows from above Corollary.

Kollár's question

Two groups, G_1 and G_2 , are said to be *commensurable up to finite kernels* if there is a zig-zag of groups and homomorphisms,

with all arrows of finite kernel and cofinite image.

Question (J. Kollár 1995)

Given a smooth, projective variety M, is the fundamental group $\Gamma = \pi_1(M)$ commensurable, up to finite kernels, with another group, π , admitting a $K(\pi, 1)$ which is a quasi-projective variety?

Theorem (DPS 2009)

For each $k \ge 3$, there is a smooth, irreducible, complex projective variety M of complex dimension k - 1, such that the group $\Gamma = \pi_1(M)$ is of type F_{k-1} , but not of type FP_k .

Lemma (Bieri 1981)

Let π be a finite-index subgroup of G. Then G is of type FP_n if and only if π is.

Lemma (Bieri 1981)

Let $1 \to N \to G \to Q \to 1$ be an exact sequence of groups, and assume N is of type FP_{∞} . Then G is of type FP_n if and only if Q is.

Corollary

Suppose G_1 and G_2 are commensurable up to finite kernels. Then G_1 is of type FP_n if and only G_2 is of type FP_n .

Fact: every quasi-projective variety has the homotopy type of a finite CW-complex.

Hence, $\Gamma = \pi_1(M)$ is not commensurable (up to finite kernels) to any group π admitting a $K(\pi, 1)$ which is a quasi-projective variety.

Construction of *M*

- Let *E* be a complex elliptic curve, and fix an integer $g \ge 2$.
- Pick a subset $B \subset E$ of cardinality |B| = 2g 2.
- Fix a basepoint x₀ ∈ E \ B, and for each point b ∈ B, choose a loop α_b in E \ B, circling in a positive direction around b.
- Finally, choose a homomorphism $\varphi \colon \pi_1(E \setminus B, x_0) \to \mathbb{Z}_2$ such that $\varphi(\alpha_b) = 1$, for all $b \in B$.
- With these choices, there is a smooth projective curve *C* of genus *g*, and a branched 2-fold cover, $f: C \to E$, which induces a bijection between the ramification locus $R \subset C$ and the branch locus $B \subset E$.
- The restriction *f*: *C* \ *R* → *E* \ *B* is the regular cover corresponding to φ.

- Now fix an integer $k \ge 3$, and set $X = C^{\times k}$.
- Let s₂: E^{×2} → E be the group law of the elliptic curve, and extend it by associativity to a map s_k: E^{×k} → E.
- Composing this map with the product map $f^{\times k} : C^{\times k} \to E^{\times k}$, we obtain a surjective holomorphic map,

$$h = s_k \circ f \colon X \to E.$$

Lemma (DPS 2009)

Let M be the generic fiber of h. Then M is a smooth, complex projective variety of dimension k - 1. Moreover,

M is connected.

3
$$\pi_2(M) = \cdots = \pi_{k-2}(M) = 0.$$

Proof of Theorem.

- Set $G = \pi_1(X)$ and $\Gamma = \pi_1(M)$. Identify $\pi_1(E) = \mathbb{Z}^2$, and write $\nu = h_{\sharp}$.
- From lemma, parts (1) and (2), we have a short exact sequence,

$$1 \longrightarrow \Gamma \longrightarrow G \xrightarrow{\nu} \mathbb{Z}^2 \longrightarrow 1$$
.

- Since X is a k-fold product of surfaces of genus g ≥ 2, we have that X is a K(G, 1).
- We also know: $\Omega_2^k(G) = \emptyset$.
- By lemma, part (3), a classifying space K(Γ, 1) can be obtained from M by attaching cells of dimension k and higher.
- Consequently, Γ is of type F_{k-1} .
- Finally, a previous theorem shows that Γ is not of type FP_k .