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The character group

@ Throughout, X will be a connected CW-complex, with finite
k-skeleton, for some k > 1. We may assume X has a single
0-cell, call it xp.

@ Let G = m(X, xp) be the fundamental group of X.
@ The character group,
G= Hom(G, C*),

is an algebraic group, with multiplication p - p’(g) = p(9)r'(9), and
identity G — C*, g — 1.

@ Let Gy = G/G = Hy(X,Z) be the abelianization of G. The
projection ab: G — Ggp, induces an isomorphism G, — G.
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The character group

@ The identity component, GO, is isomorphic to a complex algebraic
torus of dimension n = rank Ggp.

@ The other connected components are all isomorphic to
G° = (C*)", and are indexed by the finite abelian group Tors(Gap ).

e parametrizes rank 1 local systems on X:
p:G—-C* ~ L,

the complex vector space C, viewed as a right module over the
group ring ZGvia a- g = p(g)a, forg e Gand a € C.
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The equivariant chain complex

@ Letp: X — X be the universal cover. The cell structure on X lifts
to a cell structure on X.

@ Fixing a lift X, € p~! (Xo) identifies G = 71 (X, xo) with the group of
deck transformations of X.

@ Thus, we may view the cellular chain complex of X,
~ 5i+1 ~ 5,— ~
—>Ci1(X,Z) —= Ci(X,Z) —= Ci_1(X,Z) —= -,

as a chain complex of left ZG-modules.
@ The homology groups of X with coefficients in £, are defined as

H. (X, L,) = H.(L, @26 Co(X,Z)).
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The equivariant chain complex

@ In concrete terms, H.(X, £L,) may be computed from the chain
complex of C-vector spaces,

L C;+1(X,C) 9iy1(p)

Ci(X,C)

Cio1(X,C) —---,

where the evaluation of J; at p is obtained by applying the ring
homomorphism ZG — C, g — p(g) to each entry of 0;.

@ Alternatively, consider the universal abelian cover, X2, and its
equivariant chain complex, C, (X3 7) = ZGap @7 Co(X, Z), with
differentials 92° = id ® 9;. The homology of X with coefficients in
the rank 1 local system given by p € Gab = Gis computed from
similar chain complex, with differentials 92°(p) = d;(p).

@ Theidentity 1 € G yields the trivial local system, £; = C, and
H.(X,C) is the usual homology of X with C-coefficients. Denote
by b;j(X) = dimc H;(X, C) the ith Betti number of X.
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Homology jump loci

Definition
The characteristic varieties of X are the sets

Vi(X) = {p € G| dimc H(X, L,) > d},

defined for all degrees 0 </ < k and all depths d > 0.

e For each /, get stratification G2 Vi D Vi O -

@ 1cVi(X) <= bi(X)>d.

@ VI(X)={1}and VY(X) =0, ford > 1.

@ V/(X) depends only on G (in fact, only on G/G"), so we may write
these sets as Vy(G).

@ Define analogously VL(X.k) € Hom(G,k*), for arbitrary field k.
Then V(X, k) = V(X,K) N Hom(G, k*), for any extension k C K.
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Homology jump loci

Lemma

Each VQ(X ) is a Zariski closed subset of the algebraic group G.

Proof.

Let R = C[Gap] be the coordinate ring of G= @‘ab. By definition, a
character p belongs to V/,(X) if and only if

rank 922, (p) + rank 92°(p) < ¢; — d,

where ¢; = ¢;(X) is the number of /-cells of X. Hence,

Vi(X) = N {p e G|rankd®,(p) <r—1or rankd®(p) < s — 1}

r+s=c;j—d+1;r,s>0

= V( Z Ep(afb) (5’/+1 ))

p+q=ci_1+d—1;p,q>0

where Eq(p) = ideal of minors of size a — g of ¢: R — R2.
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Homology jump loci

The characteristic varieties are homotopy-type invariants of a space:
Lemma

Suppose X ~ X'. Foreachi < k, _there is an isomorphism G = é,
which restricts to isomorphisms V(X") = V| (X), for all d > 0.

Proof.
Let f: X — X’ be a (cellular) homotopy equivalence.

The induced homomorphism f#: 74 (X X0) — m1 (X', Xg), yields an
isomorphism of algebraic groups, fﬁ GG

Lifting f to a cellular homotopy equivalence, 7: X — X', defines
isomorphisms Hi(X, L,.1,) — Hi(X', L,), for each p € G'.

Hence, f; restricts to isomorphisms Vi (X') — Vi (X). O
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Some examples

Example (The circle)

We have S' = R.
Identify 71(S', %) = Z = (t) and ZZ = Z[t*"]. Then:

Cu(S1): 0 —>z[rt1]

Z[tt'—0

For p € Hom(Z,C*) = C*, we get

C(S) @z Ly, 0—>C2>C—>0

which is exact, except for p = 1, when Ho(S',C) = H;(S',C) = C.
Hence:
(S =Vi(s") = {1}

Vi(S') =0, otherwise.

Alex Suciu (Northeastern University) Jump loci and homological finiteness



Example (The n-torus)
Identify 71(T") = Z", and Hom(Z",C*) = (C*)". Using the Koszul
resolution C,(T") as above, we get

{1} ifd < (7,
0 otherwise.

Vy(T") = {

Example (Nilmanifolds)

More generally, let M be a nilmanifold. An inductive argument on the
nilpotency class of w1(M), based on the Hochschild-Serre spectral
sequence, yields (MP 2009)

{1} ifd < bi(M),
0 otherwise

Vy(M) = {
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Some examples

Example (Wedge of circles)
Identify 71 (\/" S') = F,, and Hom(F,,, C*) = (C*)". Then:

" (C)" ifd<n,

vy(\/S") =5 {1} ifd=n,
0 if d > n.

Example (Orientable surface of genus g > 1)
Write 71(Sg) = (X1,...,Xg, Y1, .-, Yg | [X1,¥1] - - - [Xg, ¥g] = 1), and
identify Hom(71(Sq), C*) = (C*)?9. Then:
(C)%9 ifi=1,d<2g—1,
Vi(Sg) = { {1} ifi=1,d=2g—1,2g,0ori=2,d=1,
0 otherwise.

Jump loci and homological finiteness
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Depth one characteristic varieties

Depth one characteristic varieties
Most important for us will be the depth-1 characteristic varieties,
V{(X), and their unions up to a fixed degree,
. i ; A~
VI(X) = JVI(X)={pe G| H(X,L,) #0, for some j < i}.
j=0
Get ascending filtration of the character group,
{1} =YX) V' (X)c--- cVK(X) C G

These loci are the support varieties for the Alexander invariants of X.
More precisely, view H, (X2 C) as a module over the group-ring
C[Ggp]- Then (PS 2010),

Vi(X) = V(amn (€D H(x*,C))).

J<i
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We will also consider the varieties W (X) = V{(X) N G° and

Get ascending filtration of the character torus of G,
{1} =Wo(X) S W'(X) C--- S WH(X) € G°.

Let X* — X be the maximal torsion-free abelian cover of X,
corresponding to the canonical projection a: G — H, where

H = Gap/ Tors(Ggp) = Z", n = by(G).

Identify G° = (C*)" and C[Z"] = Z[t, ... t+']. Then,

Wi(X) = V(amn (@ H(x,C))).
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Products and wedges

The depth-1 characteristic varieties behave well with respect to
products and wedges. More precisely:

@ Let Xj and X5 be connected CW-complexes with finite k-skeleta,
and with fundamental groups G and Go.

(] LetX:X1 X Xg;SetG:ﬂ'1(X).
o Identify G= Gy x Gp, G= Gy x Gp, G° = G2 x GY.

Proposition (PS 2010)
Foralli < k,

Vi(Xi x Xo) = | VP(X) x Vi(Xa).
p+q=i
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Products and wedges
Proof.

@ Let X = X; x X, be the universal cover. We have a G-equivariant
isomorphism of chain complexes, C.(X) = Co(X1) @z Co(X2).

@ Given a character p = (p1, p2) € @1 X ag = @, we obtain an iso
Co(X,L,) = Cu( X1, Ly,) @c Co(Xo, L,).

@ Hence, Hi(X, L,) = @s ;i Hs(Xq4, L,,) ®@c Hi(Xe, L,,), and the
conclusion follows.

Corollary

(X1 X X2 U Vp X1) X Vq(Xg)
p+q=i
WXy x Xo) = | WP(X1) x WI(Xp).
pt+q=i
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Products and wedges

@ Let X = Xj v X5 (taken at the unique 0-cells); set G = 71 (X).
e Identify G = Gy * Go, G-= G1 X Gg, G° = GO X G0

@ (PS 2010) Suppose X; and Xs have positive first Betti numbers.
Then, forall 1 </ < k,
G x Go ifi=1,

V(X v Xe) =9 S .

@ Hence, VI(X; VXo) =G and Wi(X; V Xo) = G°.

@ The condition by(Xs) > 0 may be dropped if i > 1, but not if /i = 1.
E.g., take X; = S and Xo = S2. Then Gy = Z, G, = {1}.
Thus, G = C*, yet V}(S' v 82) = {1}.
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The Alexander polynomial

The Alexander polynomial
@ Recall the maximal torsion-free abelian cover, g: X* — X,
corresponding to a: G = my(X, xp) - H = Z".
e Define two modules over the Noetherian ring ZH=Z[t}', ... t3]:
» The Alexander module Ag = Hi(X*,q7'(x0); Z).
» The Alexander invariant Bg = Hi(X*,Z).

@ These modules depend only on the group G:
» Ag =7ZH ®y¢ lg, where e: ZG — 7Z, g — 1 is the augmentation
map, and /g = kere.

> BG = ker(AG —» /H)
@ Define the Alexander polynomial of G:

Ag = ng(E~| (AG)) € ZH.

@ IfG=(xy,...,Xq | 11,...,rm) is finitely presented, A is the gcd of
all minors of size g — 1 of the Alexander matrix,

(DG = (8r,-/8x/-)°‘: ZH™ — ZHY.
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@ Recall W'(G) = V!(G) N G° is a subvariety of G = H = (C*)".
@ Let W'(G) be the union of all codim. 1 components of W'(G).

@ Let V(Ag) be the hypersurface in H= (C*)" defined by Ag.

Theorem (DPS 2008)
Q@ Ag=0<= W'(G) = H. In this case, W' (G) = 0.
Q Ifby(G) > 1 and Ag # 0, then

e [V(g) ifby(G) > 1
e {V(AG)U{1} ib1(G) = 1.

© Ifby(G) > 2, then W'(G) = } <= Ag = const.
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Knots, links, and -manifolds

Knots, links, and 3-manifolds
@ Let K be a non-trivial knot in S3, with complement X = S\ K,
and G = my (X,Xo).

@ We have: H= Hy(X,Z) = Z,and Ag = Ax € ZH = Z[t*"] is the
Alexander polynomial of the knot (J. Alexander 1928).

@ Moreover, Ak(1) = +1. Thus, W' = W' = V' c C*.

@ Hence:
V {zeCX|AK 0}U{1}

@ More generally, let L = (Ly,...,L,) be alink in S, with
complement X = S\ U7, L;. Then H = Z" and
VI(X)={z € (C)"| A(z) =0} U {1},

where A; = A((t, ..., ty) is the multi-variable Alex polynomial.
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Knots, links, and -manifolds

@ Even more generally, let M be a compact, connected 3-manifold,
with G = 71 (M).

@ Suppose either

@ oM +# () and x(OM) =0, or
@ OM = () and M is orientable.

@ Theorem (DPS 2008), combined with results of
(Eisenbud—Neumann 1985) and (McMullen 2002), yields:

VIM)\ {1} = V(Ag) \ {1}.
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Toric complexes

Toric complexes and right-angled Artin groups

@ Given L simplicial complex on n vertices, define the toric complex
T, = Z,(S, %) as the subcomplex of T" obtained by deleting the
cells corresponding to the missing simplices of L:

TL=|JT° whereT?={xeT"|x=xifig¢go}

oel

@ Letl = (V,E) be the graph with vertex set the 0-cells of L, and

edge set the 1-cells of L. Then 71(T,) is the right-angled Artin
group associated to I':

Gr=(veV]w=wvif {v,w} e E).
@ Properties:
’r:?n@Gr:Fn » T =r"1]I"= Gr = Gr x Grr
» T =K,= Gr=172" » [ =01"xI"= Gr = Gr x G~
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Toric complexes

@ Identify character group Gr = Hom(Gr, C*) with the algebraic
torus (C*)Y := (C*)".

@ For each subset W C V, let (C*)W C (C*)Y be the corresponding
subtorus; in particular, (C*)? = {1}.

Theorem (PS 2009)
Vo(TL) = U (Cals

wcv

> dime Hi_1_ (kg (0),C)>d

‘TGLV\W

where Ly is the subcomplex induced by L on W, and |kk (o) is the link
of a simplex o in a subcomplex K C L.

In particular:

vieén= U @)™
wCv
Iy disconnected
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Toric complexes

Problem
Compute the Alexander polynomial of a right-angled Artin group. J

For example, Af, =0, for n > 1, while Az, =1, for n > 1.

Recall that the connectivity of a graph I' = (V, E), denoted x(I), is the
maximum integer r so that, for any subset W C V with |W| < r, the
induced subgraph on V \ W is connected.

Proposition (S 2009)

Ag. #const <= k() =1.
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Toric complexes

Proof.
@ We know: V'(Gr) consists of coordinate subspaces (C*)W,
indexed by maximal subsets W C V such that I'y is disconnected.

@ Thus, V'(Gr) is non-empty if and only if I' is connected and has a
cut point, i.e., k(') = 1.

@ If I has just 1 vertex, then x(I') = 0; on the other hand, Gr = Z,
andso Ag = 0.

@ For all other graphs, b{(Gr) > 2, and Theorem (DPS 2008) yields
the desired conclusion.

O]

v
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