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The character group

The character group

Throughout, X will be a connected CW-complex, with finite
k -skeleton, for some k ≥ 1. We may assume X has a single
0-cell, call it x0.

Let G = π1(X , x0) be the fundamental group of X .

The character group,

Ĝ = Hom(G,C×),

is an algebraic group, with multiplication ρ · ρ′(g) = ρ(g)ρ′(g), and
identity G→ C×, g 7→ 1.

Let Gab = G/G′ ∼= H1(X ,Z) be the abelianization of G. The
projection ab : G→ Gab induces an isomorphism Ĝab

'−→ Ĝ.
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The character group

The identity component, Ĝ0, is isomorphic to a complex algebraic
torus of dimension n = rank Gab.

The other connected components are all isomorphic to
Ĝ0 = (C×)n, and are indexed by the finite abelian group Tors(Gab).

Ĝ parametrizes rank 1 local systems on X :

ρ : G→ C×  Lρ

the complex vector space C, viewed as a right module over the
group ring ZG via a · g = ρ(g)a, for g ∈ G and a ∈ C.
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The equivariant chain complex

The equivariant chain complex

Let p : X̃ → X be the universal cover. The cell structure on X lifts
to a cell structure on X̃ .

Fixing a lift x̃0 ∈ p−1(x0) identifies G = π1(X , x0) with the group of
deck transformations of X̃ .

Thus, we may view the cellular chain complex of X̃ ,

· · · // Ci+1(X̃ ,Z)
∂̃i+1 // Ci(X̃ ,Z)

∂̃i // Ci−1(X̃ ,Z) // · · · ,

as a chain complex of left ZG-modules.

The homology groups of X with coefficients in Lρ are defined as

H∗(X ,Lρ) = H∗(Lρ ⊗ZG C•(X̃ ,Z)).
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The equivariant chain complex

In concrete terms, H∗(X ,Lρ) may be computed from the chain
complex of C-vector spaces,

· · · // Ci+1(X ,C)
∂̃i+1(ρ) // Ci(X ,C)

∂̃i (ρ) // Ci−1(X ,C) // · · · ,

where the evaluation of ∂̃i at ρ is obtained by applying the ring
homomorphism ZG→ C, g 7→ ρ(g) to each entry of ∂̃i .

Alternatively, consider the universal abelian cover, X ab, and its
equivariant chain complex, C•(X ab,Z) = ZGab ⊗ZG C•(X̃ ,Z), with
differentials ∂ab

i = id⊗ ∂̃i . The homology of X with coefficients in
the rank 1 local system given by ρ ∈ Ĝab = Ĝ is computed from
similar chain complex, with differentials ∂ab

i (ρ) = ∂̃i(ρ).

The identity 1 ∈ Ĝ yields the trivial local system, L1 = C, and
H∗(X ,C) is the usual homology of X with C-coefficients. Denote
by bi(X ) = dimC Hi(X ,C) the i th Betti number of X .
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Homology jump loci

Homology jump loci

Definition
The characteristic varieties of X are the sets

V i
d (X ) = {ρ ∈ Ĝ | dimC Hi(X ,Lρ) ≥ d},

defined for all degrees 0 ≤ i ≤ k and all depths d > 0.

For each i , get stratification Ĝ ⊇ V i
1 ⊇ V i

2 ⊇ · · ·
1 ∈ V i

d (X )⇐⇒ bi(X ) ≥ d .
V0

1 (X ) = {1} and V0
d (X ) = ∅, for d > 1.

V1
d (X ) depends only on G (in fact, only on G/G′′), so we may write

these sets as Vd (G).
Define analogously V i

d (X ,k) ⊂ Hom(G,k×), for arbitrary field k.
Then V i

d (X , k) = V i
d (X ,K) ∩Hom(G, k×), for any extension k ⊆ K.
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Homology jump loci

Lemma

Each V i
d (X ) is a Zariski closed subset of the algebraic group Ĝ.

Proof.

Let R = C[Gab] be the coordinate ring of Ĝ = Ĝab. By definition, a
character ρ belongs to V i

d (X ) if and only if

rank ∂ab
i+1(ρ) + rank ∂ab

i (ρ) ≤ ci − d ,

where ci = ci(X ) is the number of i-cells of X . Hence,

V i
d (X ) =

⋂
r+s=ci−d+1; r ,s≥0

{ρ ∈ Ĝ | rank ∂ab
i+1(ρ) ≤ r − 1 or rank ∂ab

i (ρ) ≤ s − 1}

= V

( ∑
p+q=ci−1+d−1; p,q≥0

Ep(∂ab
i ) · Eq(∂ab

i+1)

)
,

where Eq(ϕ) = ideal of minors of size a− q of ϕ : Rb → Ra.
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Homology jump loci

The characteristic varieties are homotopy-type invariants of a space:

Lemma

Suppose X ' X ′. For each i ≤ k, there is an isomorphism Ĝ′ ∼= Ĝ,
which restricts to isomorphisms V i

d (X ′) ∼= V i
d (X ), for all d > 0.

Proof.
Let f : X → X ′ be a (cellular) homotopy equivalence.

The induced homomorphism f] : π1(X , x0)→ π1(X ′, x ′0), yields an
isomorphism of algebraic groups, f̂] : Ĝ′ → Ĝ.

Lifting f to a cellular homotopy equivalence, f̃ : X̃ → X̃ ′, defines
isomorphisms Hi(X ,Lρ◦f])→ Hi(X ′,Lρ), for each ρ ∈ Ĝ′.

Hence, f̂] restricts to isomorphisms V i
d (X ′)→ V i

d (X ).
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Some examples

Example (The circle)

We have S̃1 = R.
Identify π1(S1, ∗) = Z = 〈t〉 and ZZ = Z[t±1]. Then:

C•(S̃1) : 0 // Z[t±1]
t−1 // Z[t±1] // 0

For ρ ∈ Hom(Z,C×) = C×, we get

C•(S̃1)⊗ZZ Lρ : 0 // C
ρ−1 // C // 0

which is exact, except for ρ = 1, when H0(S1,C) = H1(S1,C) = C.
Hence:

V0
1 (S1) = V1

1 (S1) = {1}

V i
d (S1) = ∅, otherwise.
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Some examples

Example (The n-torus)
Identify π1(T n) = Zn, and Hom(Zn,C×) = (C×)n. Using the Koszul
resolution C•(T̃ n) as above, we get

V i
d (T n) =

{
{1} if d ≤

(n
i

)
,

∅ otherwise.

Example (Nilmanifolds)
More generally, let M be a nilmanifold. An inductive argument on the
nilpotency class of π1(M), based on the Hochschild-Serre spectral
sequence, yields (MP 2009)

V i
d (M) =

{
{1} if d ≤ bi(M),

∅ otherwise

Alex Suciu (Northeastern University) Jump loci and homological finiteness Pisa, May 2010 11 / 25



Some examples

Example (Wedge of circles)

Identify π1(
∨n S1) = Fn, and Hom(Fn,C×) = (C×)n. Then:

V1
d
( n∨

S1) =


(C×)n if d < n,
{1} if d = n,
∅ if d > n.

Example (Orientable surface of genus g > 1)
Write π1(Sg) = 〈x1, . . . , xg , y1, . . . , yg | [x1, y1] · · · [xg , yg] = 1〉, and
identify Hom(π1(Sg),C×) = (C×)2g . Then:

V i
d (Sg) =


(C×)2g if i = 1, d < 2g − 1,
{1} if i = 1, d = 2g − 1,2g, or i = 2, d = 1,
∅ otherwise.
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Depth one characteristic varieties

Depth one characteristic varieties
Most important for us will be the depth-1 characteristic varieties,
V i

1(X ), and their unions up to a fixed degree,

V i(X ) =
i⋃

j=0

V j
1(X ) = {ρ ∈ Ĝ | Hj(X ,Lρ) 6= 0, for some j ≤ i}.

Get ascending filtration of the character group,

{1} = V0(X ) ⊆ V1(X ) ⊆ · · · ⊆ Vk (X ) ⊆ Ĝ.

These loci are the support varieties for the Alexander invariants of X .
More precisely, view H∗(X ab,C) as a module over the group-ring
C[Gab]. Then (PS 2010),

V i(X ) = V
(

ann
(⊕

j≤i

Hj
(
X ab,C

)))
.
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Depth one characteristic varieties

We will also consider the varietiesW i
1(X ) = V i

1(X ) ∩ Ĝ0 and

W i(X ) =
i⋃

j=0

W j
1(X ) = V i(X ) ∩ Ĝ0.

Get ascending filtration of the character torus of G,

{1} =W0(X ) ⊆ W1(X ) ⊆ · · · ⊆ Wk (X ) ⊆ Ĝ0.

Let Xα → X be the maximal torsion-free abelian cover of X ,
corresponding to the canonical projection α : G� H, where

H = Gab/Tors(Gab) = Zn, n = b1(G).

Identify Ĝ0 = (C×)n and C[Zn] = Z[t±1
1 , . . . , t±1

n ]. Then,

W i(X ) = V
(

ann
(⊕

j≤i

Hj
(
Xα,C

)))
.
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Products and wedges

Products and wedges
The depth-1 characteristic varieties behave well with respect to
products and wedges. More precisely:

Let X1 and X2 be connected CW-complexes with finite k -skeleta,
and with fundamental groups G1 and G2.

Let X = X1 × X2; set G = π1(X ).

Identify G = G1 ×G2, Ĝ = Ĝ1 × Ĝ2, Ĝ0 = Ĝ0
1 × Ĝ0

2.

Proposition (PS 2010)
For all i ≤ k,

V i
1(X1 × X2) =

⋃
p+q=i

Vp
1 (X1)× Vq

1 (X2).

Alex Suciu (Northeastern University) Jump loci and homological finiteness Pisa, May 2010 15 / 25



Products and wedges

Proof.

Let X̃ = X̃1 × X̃2 be the universal cover. We have a G-equivariant
isomorphism of chain complexes, C•(X̃ ) ∼= C•(X̃1)⊗Z C•(X̃2).

Given a character ρ = (ρ1, ρ2) ∈ Ĝ1 × Ĝ2 = Ĝ, we obtain an iso
C•(X ,Lρ) ∼= C•(X1,Lρ1)⊗C C•(X2,Lρ2).
Hence, Hi(X ,Lρ) =

⊕
s+t=i Hs(X1,Lρ1)⊗C Ht (X2,Lρ2), and the

conclusion follows.

Corollary

V i(X1 × X2) =
⋃

p+q=i

Vp(X1)× Vq(X2),

W i(X1 × X2) =
⋃

p+q=i

Wp(X1)×Wq(X2).
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Products and wedges

Let X = X1 ∨ X2 (taken at the unique 0-cells); set G = π1(X ).

Identify G = G1 ∗G2, Ĝ = Ĝ1 × Ĝ2, Ĝ0 = Ĝ0
1 × Ĝ0

2.

(PS 2010) Suppose X1 and X2 have positive first Betti numbers.
Then, for all 1 ≤ i ≤ k ,

V i
1(X1 ∨ X2) =

{
Ĝ1 × Ĝ2 if i = 1,

V i
1(X1)× Ĝ2 ∪ Ĝ1 × V i

1(X2) if i > 1.

Hence, V i(X1 ∨ X2) = Ĝ and W i(X1 ∨ X2) = Ĝ0.

The condition b1(Xs) > 0 may be dropped if i > 1, but not if i = 1.
E.g., take X1 = S1 and X2 = S2. Then G1 = Z, G2 = {1}.
Thus, Ĝ = C×, yet V1

1 (S1 ∨ S2) = {1}.
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The Alexander polynomial

The Alexander polynomial
Recall the maximal torsion-free abelian cover, q : Xα → X ,
corresponding to α : G = π1(X , x0)� H ∼= Zn.
Define two modules over the Noetherian ring ZH∼=Z[t±1

1 , . . . , t±1
n ]:

I The Alexander module AG = H1(Xα,q−1(x0);Z).
I The Alexander invariant BG = H1(Xα,Z).

These modules depend only on the group G:
I AG = ZH ⊗ZG IG, where ε : ZG→ Z, g 7→ 1 is the augmentation

map, and IG = ker ε.
I BG = ker(AG � IH).

Define the Alexander polynomial of G:

∆G := gcd(E1(AG)) ∈ ZH.

If G = 〈x1, . . . , xq | r1, . . . , rm〉 is finitely presented, ∆G is the gcd of
all minors of size q − 1 of the Alexander matrix,

ΦG =
(
∂ri/∂xj

)α
: ZHm → ZHq.
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The Alexander polynomial

RecallW1(G) = V1(G) ∩ Ĝ0 is a subvariety of Ĝ0 = Ĥ = (C×)n.

Let W̌1(G) be the union of all codim. 1 components ofW1(G).

Let V (∆G) be the hypersurface in Ĥ = (C×)n defined by ∆G.

Theorem (DPS 2008)

1 ∆G = 0⇐⇒W1(G) = Ĥ. In this case, W̌1(G) = ∅.
2 If b1(G) ≥ 1 and ∆G 6= 0, then

W̌1(G) =

{
V (∆G) if b1(G) > 1
V (∆G)

∐
{1} if b1(G) = 1.

3 If b1(G) ≥ 2, then W̌1(G) = ∅ ⇐⇒ ∆G
.

= const.
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Knots, links, and 3-manifolds

Knots, links, and 3-manifolds
Let K be a non-trivial knot in S3, with complement X = S3 \ K ,
and G = π1(X , x0).

We have: H = H1(X ,Z) = Z, and ∆G = ∆K ∈ ZH = Z[t±1] is the
Alexander polynomial of the knot (J. Alexander 1928).

Moreover, ∆K (1) = ±1. Thus, W̌1 =W1 = V1 ⊂ C×.

Hence:
V1(X ) =

{
z ∈ C× | ∆K (z) = 0

}
∪ {1}.

More generally, let L = (L1, . . . ,Ln) be a link in S3, with
complement X = S3 \

⋃n
i=1 Li . Then H = Zn and

V1(X ) = {z ∈ (C×)n | ∆L(z) = 0} ∪ {1},

where ∆L = ∆L(t1, . . . , tn) is the multi-variable Alex polynomial.

Alex Suciu (Northeastern University) Jump loci and homological finiteness Pisa, May 2010 20 / 25



Knots, links, and 3-manifolds

Even more generally, let M be a compact, connected 3-manifold,
with G = π1(M).

Suppose either
1 ∂M 6= ∅ and χ(∂M) = 0, or
2 ∂M = ∅ and M is orientable.

Theorem (DPS 2008), combined with results of
(Eisenbud–Neumann 1985) and (McMullen 2002), yields:

V1(M) \ {1} = V (∆G) \ {1}.
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Toric complexes

Toric complexes and right-angled Artin groups
Given L simplicial complex on n vertices, define the toric complex
TL = ZL(S1, ∗) as the subcomplex of T n obtained by deleting the
cells corresponding to the missing simplices of L:

TL =
⋃
σ∈L

T σ, where T σ = {x ∈ T n | xi = ∗ if i /∈ σ}.

Let Γ = (V,E) be the graph with vertex set the 0-cells of L, and
edge set the 1-cells of L. Then π1(TL) is the right-angled Artin
group associated to Γ:

GΓ = 〈v ∈ V | vw = wv if {v ,w} ∈ E〉.

Properties:

I Γ = K n ⇒ GΓ = Fn

I Γ = Kn ⇒ GΓ = Zn

I Γ = Γ′
∐

Γ′′ ⇒ GΓ = GΓ′ ∗GΓ′′

I Γ = Γ′ ∗ Γ′′ ⇒ GΓ = GΓ′ ×GΓ′′
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Toric complexes

Identify character group ĜΓ = Hom(GΓ,C×) with the algebraic
torus (C×)V := (C×)n.
For each subset W ⊆ V, let (C×)W ⊆ (C×)V be the corresponding
subtorus; in particular, (C×)∅ = {1}.

Theorem (PS 2009)

V i
d (TL) =

⋃
W⊆V∑

σ∈LV\W
dimC H̃i−1−|σ|(lkLW

(σ),C)≥d

(C×)W,

where LW is the subcomplex induced by L on W, and lkK (σ) is the link
of a simplex σ in a subcomplex K ⊆ L.

In particular:
V1

1 (GΓ) =
⋃
W⊆V

ΓW disconnected

(C×)W.
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Toric complexes

Problem
Compute the Alexander polynomial of a right-angled Artin group.

For example, ∆Fn = 0, for n ≥ 1, while ∆Zn
.

= 1, for n > 1.

Recall that the connectivity of a graph Γ = (V,E), denoted κ(Γ), is the
maximum integer r so that, for any subset W ⊂ V with |W| < r , the
induced subgraph on V \W is connected.

Proposition (S 2009)

∆GΓ
6 .= const⇐⇒ κ(Γ) = 1.
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Toric complexes

Proof.
We know: V1(GΓ) consists of coordinate subspaces (C×)W,
indexed by maximal subsets W ⊂ V such that ΓW is disconnected.

Thus, V̌1(GΓ) is non-empty if and only if Γ is connected and has a
cut point, i.e., κ(Γ) = 1.

If Γ has just 1 vertex, then κ(Γ) = 0; on the other hand, GΓ = Z,
and so ∆GΓ

= 0.

For all other graphs, b1(GΓ) ≥ 2, and Theorem (DPS 2008) yields
the desired conclusion.
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