Characteristic varieties

Alex Suciu

Northeastern University

Minicourse on Cohomology jumping loci and homological finiteness properties

> Centro Ennio De Giorgi Pisa, Italy May 10, 2010

- The character group
- 2 The equivariant chain complex
- Homology jump loci
- Some examples
- 5 Depth one characteristic varieties
- Products and wedges
- 7 The Alexander polynomial
- 8 Knots, links, and 3-manifolds
- Toric complexes and right-angled Artin groups

The character group

- Throughout, X will be a connected CW-complex, with finite k-skeleton, for some k ≥ 1. We may assume X has a single 0-cell, call it x₀.
- Let $G = \pi_1(X, x_0)$ be the fundamental group of X.
- The character group,

 $\widehat{G} = \operatorname{Hom}(G, \mathbb{C}^{\times}),$

is an algebraic group, with multiplication $\rho \cdot \rho'(g) = \rho(g)\rho'(g)$, and identity $G \to \mathbb{C}^{\times}$, $g \mapsto 1$.

Let G_{ab} = G/G' ≅ H₁(X, Z) be the abelianization of G. The projection ab: G → G_{ab} induces an isomorphism G_{ab} ≅→ G.

- The identity component, \widehat{G}^0 , is isomorphic to a complex algebraic torus of dimension $n = \operatorname{rank} G_{ab}$.
- The other connected components are all isomorphic to $\widehat{G}^0 = (\mathbb{C}^{\times})^n$, and are indexed by the finite abelian group $\text{Tors}(G_{ab})$.
- \widehat{G} parametrizes rank 1 local systems on X:

 $\rho\colon \mathbf{G}\to\mathbb{C}^\times\quad\rightsquigarrow\quad \mathcal{L}_\rho$

the complex vector space \mathbb{C} , viewed as a right module over the group ring $\mathbb{Z}G$ via $a \cdot g = \rho(g)a$, for $g \in G$ and $a \in \mathbb{C}$.

The equivariant chain complex

- Let p: X̃ → X be the universal cover. The cell structure on X lifts to a cell structure on X̃.
- Fixing a lift x̃₀ ∈ p⁻¹(x₀) identifies G = π₁(X, x₀) with the group of deck transformations of X̃.
- Thus, we may view the cellular chain complex of \tilde{X} ,

$$\cdots \longrightarrow C_{i+1}(\widetilde{X},\mathbb{Z}) \xrightarrow{\widetilde{\partial}_{i+1}} C_i(\widetilde{X},\mathbb{Z}) \xrightarrow{\widetilde{\partial}_i} C_{i-1}(\widetilde{X},\mathbb{Z}) \longrightarrow \cdots,$$

as a chain complex of left $\mathbb{Z}G$ -modules.

• The homology groups of X with coefficients in \mathcal{L}_{ρ} are defined as

$$H_*(X, \mathcal{L}_{\rho}) = H_*(\mathcal{L}_{\rho} \otimes_{\mathbb{Z}G} C_{\bullet}(\widetilde{X}, \mathbb{Z})).$$

In concrete terms, H_{*}(X, L_ρ) may be computed from the chain complex of C-vector spaces,

 $\cdots \longrightarrow C_{i+1}(X,\mathbb{C}) \xrightarrow{\tilde{\partial}_{i+1}(\rho)} C_i(X,\mathbb{C}) \xrightarrow{\tilde{\partial}_i(\rho)} C_{i-1}(X,\mathbb{C}) \longrightarrow \cdots,$

where the evaluation of $\tilde{\partial}_i$ at ρ is obtained by applying the ring homomorphism $\mathbb{Z}G \to \mathbb{C}$, $g \mapsto \rho(g)$ to each entry of $\tilde{\partial}_i$.

- Alternatively, consider the universal abelian cover, X^{ab}, and its equivariant chain complex, C_●(X^{ab}, Z) = ZG_{ab} ⊗_{ZG} C_●(X̃, Z), with differentials ∂_i^{ab} = id ⊗ ∂_i. The homology of X with coefficients in the rank 1 local system given by ρ ∈ G_{ab} = Ĝ is computed from similar chain complex, with differentials ∂_i^{ab}(ρ) = ∂̃_i(ρ).
- The identity 1 ∈ Ĝ yields the trivial local system, L₁ = C, and H_{*}(X, C) is the usual homology of X with C-coefficients. Denote by b_i(X) = dim_C H_i(X, C) the *i*th Betti number of X.

Homology jump loci

Definition

The characteristic varieties of X are the sets

$$\mathcal{V}^{i}_{d}(X) = \{ \rho \in \widehat{G} \mid \dim_{\mathbb{C}} \mathcal{H}_{i}(X, \mathcal{L}_{\rho}) \geq d \},$$

defined for all degrees $0 \le i \le k$ and all depths d > 0.

- For each *i*, get stratification $\widehat{G} \supseteq \mathcal{V}_1^i \supseteq \mathcal{V}_2^j \supseteq \cdots$
- $1 \in \mathcal{V}^i_d(X) \iff b_i(X) \ge d.$
- $\mathcal{V}_1^0(X) = \{1\}$ and $\mathcal{V}_d^0(X) = \emptyset$, for d > 1.
- 𝒱¹_d(X) depends only on G (in fact, only on G/G"), so we may write these sets as 𝒱_d(G).
- Define analogously $\mathcal{V}_d^i(X, \Bbbk) \subset \operatorname{Hom}(G, \Bbbk^{\times})$, for arbitrary field \Bbbk . Then $\mathcal{V}_d^i(X, \Bbbk) = \mathcal{V}_d^i(X, \mathbb{K}) \cap \operatorname{Hom}(G, \Bbbk^{\times})$, for any extension $\Bbbk \subseteq \mathbb{K}$.

Lemma

Each $\mathcal{V}_{d}^{i}(X)$ is a Zariski closed subset of the algebraic group \widehat{G} .

Proof.

Let $R = \mathbb{C}[G_{ab}]$ be the coordinate ring of $\widehat{G} = \widehat{G}_{ab}$. By definition, a character ρ belongs to $\mathcal{V}_{d}^{i}(X)$ if and only if

 $\operatorname{rank} \partial_{i+1}^{\operatorname{ab}}(\rho) + \operatorname{rank} \partial_i^{\operatorname{ab}}(\rho) \leq c_i - d,$

where $c_i = c_i(X)$ is the number of *i*-cells of *X*. Hence,

$$\begin{aligned} \mathcal{V}_{d}^{i}(X) &= \bigcap_{r+s=c_{i}-d+1; r,s\geq 0} \{\rho \in \widehat{G} \mid \operatorname{rank} \partial_{i+1}^{\operatorname{ab}}(\rho) \leq r-1 \text{ or } \operatorname{rank} \partial_{i}^{\operatorname{ab}}(\rho) \leq s-1 \} \\ &= V \left(\sum_{p+q=c_{i-1}+d-1; p,q\geq 0} E_{p}(\partial_{i}^{\operatorname{ab}}) \cdot E_{q}(\partial_{i+1}^{\operatorname{ab}}) \right), \end{aligned}$$

where $E_q(\varphi) =$ ideal of minors of size a - q of $\varphi \colon \mathbb{R}^b \to \mathbb{R}^a$.

The characteristic varieties are homotopy-type invariants of a space:

Lemma

Suppose $X \simeq X'$. For each $i \le k$, there is an isomorphism $\widehat{G'} \cong \widehat{G}$, which restricts to isomorphisms $\mathcal{V}_d^i(X') \cong \mathcal{V}_d^i(X)$, for all d > 0.

Proof.

Let $f: X \to X'$ be a (cellular) homotopy equivalence.

The induced homomorphism $f_{\sharp} : \pi_1(X, x_0) \to \pi_1(X', x'_0)$, yields an isomorphism of algebraic groups, $\hat{f}_{\sharp} : \widehat{G'} \to \widehat{G}$.

Lifting *f* to a cellular homotopy equivalence, $\tilde{f}: \tilde{X} \to \tilde{X}'$, defines isomorphisms $H_i(X, \mathcal{L}_{\rho \circ f_{\sharp}}) \to H_i(X', \mathcal{L}_{\rho})$, for each $\rho \in \widehat{G'}$.

Hence, \hat{f}_{\sharp} restricts to isomorphisms $\mathcal{V}_{d}^{i}(X') \rightarrow \mathcal{V}_{d}^{i}(X)$.

Example (The circle)

We have $\widetilde{S^1} = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{Z}\mathbb{Z} = \mathbb{Z}[t^{\pm 1}]$. Then:

$$C_{\bullet}(\widetilde{S}^1): 0 \longrightarrow \mathbb{Z}[t^{\pm 1}] \xrightarrow{t-1} \mathbb{Z}[t^{\pm 1}] \longrightarrow 0$$

For $\rho \in \mathsf{Hom}(\mathbb{Z},\mathbb{C}^{\times}) = \mathbb{C}^{\times}$, we get

$$C_{\bullet}(\widetilde{S}^{1}) \otimes_{\mathbb{ZZ}} \mathcal{L}_{\rho} : 0 \longrightarrow \mathbb{C} \xrightarrow{\rho-1} \mathbb{C} \longrightarrow 0$$

which is exact, except for $\rho = 1$, when $H_0(S^1, \mathbb{C}) = H_1(S^1, \mathbb{C}) = \mathbb{C}$. Hence:

$$\mathcal{V}_1^0(S^1) = \mathcal{V}_1^1(S^1) = \{1\}$$

 $\mathcal{V}_d^i(S^1) = \emptyset$, otherwise.

Example (The *n*-torus)

Identify $\pi_1(T^n) = \mathbb{Z}^n$, and $\text{Hom}(\mathbb{Z}^n, \mathbb{C}^{\times}) = (\mathbb{C}^{\times})^n$. Using the Koszul resolution $C_{\bullet}(\widetilde{T^n})$ as above, we get

$$\mathcal{V}_{d}^{i}(\mathcal{T}^{n}) = \begin{cases} \{1\} & \text{if } d \leq {n \choose i}, \\ \emptyset & \text{otherwise.} \end{cases}$$

Example (Nilmanifolds)

More generally, let *M* be a nilmanifold. An inductive argument on the nilpotency class of $\pi_1(M)$, based on the Hochschild-Serre spectral sequence, yields (MP 2009)

$$\mathcal{V}_{d}^{i}(M) = egin{cases} \{1\} & ext{if } d \leq b_{i}(M), \ \emptyset & ext{otherwise} \end{cases}$$

Example (Wedge of circles)

Identify $\pi_1(\bigvee^n S^1) = F_n$, and $\text{Hom}(F_n, \mathbb{C}^{\times}) = (\mathbb{C}^{\times})^n$. Then:

$$\mathcal{V}_d^1(\bigvee^n S^1) = \begin{cases} (\mathbb{C}^{\times})^n & \text{if } d < n, \\ \{1\} & \text{if } d = n, \\ \emptyset & \text{if } d > n. \end{cases}$$

Example (Orientable surface of genus g > 1) Write $\pi_1(S_g) = \langle x_1, \dots, x_g, y_1, \dots, y_g | [x_1, y_1] \cdots [x_g, y_g] = 1 \rangle$, and identify $\text{Hom}(\pi_1(S_g), \mathbb{C}^{\times}) = (\mathbb{C}^{\times})^{2g}$. Then:

$$\mathcal{V}_{d}^{i}(S_{g}) = \begin{cases} (\mathbb{C}^{\times})^{2g} & \text{if } i = 1, \, d < 2g - 1, \\ \{1\} & \text{if } i = 1, \, d = 2g - 1, 2g, \, \text{or } i = 2, \, d = 1, \\ \emptyset & \text{otherwise.} \end{cases}$$

Depth one characteristic varieties

Most important for us will be the depth-1 characteristic varieties, $\mathcal{V}_1^i(X)$, and their unions up to a fixed degree,

$$\mathcal{V}^{i}(X) = \bigcup_{j=0}^{\prime} \mathcal{V}_{1}^{j}(X) = \{ \rho \in \widehat{G} \mid H_{j}(X, \mathcal{L}_{\rho}) \neq 0, \text{ for some } j \leq i \}.$$

Get ascending filtration of the character group,

$$\{1\} = \mathcal{V}^0(X) \subseteq \mathcal{V}^1(X) \subseteq \cdots \subseteq \mathcal{V}^k(X) \subseteq \widehat{G}.$$

These loci are the support varieties for the Alexander invariants of *X*. More precisely, view $H_*(X^{ab}, \mathbb{C})$ as a module over the group-ring $\mathbb{C}[G_{ab}]$. Then (PS 2010),

$$\mathcal{V}^{i}(X) = V\left(\operatorname{ann}\left(\bigoplus_{j\leq i}H_{j}(X^{\operatorname{ab}},\mathbb{C})\right)\right).$$

We will also consider the varieties $W_1^i(X) = V_1^i(X) \cap \widehat{G}^0$ and

$$\mathcal{W}^{i}(X) = \bigcup_{j=0}^{i} \mathcal{W}_{1}^{j}(X) = \mathcal{V}^{i}(X) \cap \widehat{G}^{0}.$$

Get ascending filtration of the character torus of G,

$$\{1\} = \mathcal{W}^0(X) \subseteq \mathcal{W}^1(X) \subseteq \cdots \subseteq \mathcal{W}^k(X) \subseteq \widehat{G}^0.$$

Let $X^{\alpha} \to X$ be the maximal torsion-free abelian cover of X, corresponding to the canonical projection $\alpha : G \to H$, where

$$H = G_{ab} / \operatorname{Tors}(G_{ab}) = \mathbb{Z}^n, \qquad n = b_1(G).$$

Identify $\widehat{G}^0 = (\mathbb{C}^{\times})^n$ and $\mathbb{C}[\mathbb{Z}^n] = \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$. Then,

$$\mathcal{W}^{i}(X) = V\Big(\operatorname{ann}\Big(\bigoplus_{j\leq i}H_{j}(X^{\alpha},\mathbb{C})\Big)\Big).$$

Products and wedges

The depth-1 characteristic varieties behave well with respect to products and wedges. More precisely:

- Let X₁ and X₂ be connected CW-complexes with finite *k*-skeleta, and with fundamental groups G₁ and G₂.
- Let $X = X_1 \times X_2$; set $G = \pi_1(X)$.
- Identify $G = G_1 \times G_2$, $\widehat{G} = \widehat{G}_1 \times \widehat{G}_2$, $\widehat{G}^0 = \widehat{G}_1^0 \times \widehat{G}_2^0$.

Proposition (PS 2010) For all $i \leq k$,

$$\mathcal{V}_1^i(X_1 \times X_2) = \bigcup_{p+q=i} \mathcal{V}_1^p(X_1) \times \mathcal{V}_1^q(X_2).$$

Proof.

- Let X̃ = X̃₁ × X̃₂ be the universal cover. We have a *G*-equivariant isomorphism of chain complexes, C_●(X̃) ≅ C_●(X̃₁) ⊗_Z C_●(X̃₂).
- Given a character $\rho = (\rho_1, \rho_2) \in \widehat{G}_1 \times \widehat{G}_2 = \widehat{G}$, we obtain an iso $C_{\bullet}(X, \mathcal{L}_{\rho}) \cong C_{\bullet}(X_1, \mathcal{L}_{\rho_1}) \otimes_{\mathbb{C}} C_{\bullet}(X_2, \mathcal{L}_{\rho_2}).$
- Hence, H_i(X, L_ρ) = ⊕_{s+t=i} H_s(X₁, L_{ρ1}) ⊗_ℂ H_t(X₂, L_{ρ2}), and the conclusion follows.

Corollary

$$\mathcal{V}^{i}(X_{1} \times X_{2}) = \bigcup_{p+q=i} \mathcal{V}^{p}(X_{1}) \times \mathcal{V}^{q}(X_{2}),$$

 $\mathcal{W}^{i}(X_{1} \times X_{2}) = \bigcup_{p+q=i} \mathcal{W}^{p}(X_{1}) \times \mathcal{W}^{q}(X_{2}).$

Alex Suciu (Northeastern University)

- Let $X = X_1 \vee X_2$ (taken at the unique 0-cells); set $G = \pi_1(X)$.
- Identify $G = G_1 * G_2$, $\widehat{G} = \widehat{G}_1 \times \widehat{G}_2$, $\widehat{G}^0 = \widehat{G}_1^0 \times \widehat{G}_2^0$.
- (PS 2010) Suppose X_1 and X_2 have positive first Betti numbers. Then, for all $1 \le i \le k$,

$$\mathcal{V}_1^i(X_1 \vee X_2) = \begin{cases} \widehat{G}_1 \times \widehat{G}_2 & \text{if } i = 1, \\ \mathcal{V}_1^i(X_1) \times \widehat{G}_2 \cup \widehat{G}_1 \times \mathcal{V}_1^i(X_2) & \text{if } i > 1. \end{cases}$$

- Hence, $\mathcal{V}^i(X_1 \vee X_2) = \widehat{G}$ and $\mathcal{W}^i(X_1 \vee X_2) = \widehat{G}^0$.
- The condition $b_1(X_s) > 0$ may be dropped if i > 1, but not if i = 1. E.g., take $X_1 = S^1$ and $X_2 = S^2$. Then $G_1 = \mathbb{Z}$, $G_2 = \{1\}$. Thus, $\widehat{G} = \mathbb{C}^{\times}$, yet $\mathcal{V}_1^1(S^1 \vee S^2) = \{1\}$.

The Alexander polynomial

- Recall the maximal torsion-free abelian cover, $q: X^{\alpha} \to X$, corresponding to $\alpha: G = \pi_1(X, x_0) \twoheadrightarrow H \cong \mathbb{Z}^n$.
- Define two modules over the Noetherian ring $\mathbb{Z}H \cong \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$:
 - The Alexander module $A_G = H_1(X^{\alpha}, q^{-1}(x_0); \mathbb{Z}).$
 - The Alexander invariant $B_G = H_1(X^{\alpha}, \mathbb{Z}).$
- These modules depend only on the group G:
 - A_G = ℤH ⊗_{ℤG} I_G, where ε: ℤG → ℤ, g → 1 is the augmentation map, and I_G = ker ε.
 - $B_G = \ker(A_G \twoheadrightarrow I_H).$
- Define the Alexander polynomial of G:

 $\Delta_G := \operatorname{gcd}(E_1(A_G)) \in \mathbb{Z}H.$

If G = ⟨x₁,..., x_q | r₁,..., r_m⟩ is finitely presented, Δ_G is the gcd of all minors of size q − 1 of the Alexander matrix,

$$\Phi_{\boldsymbol{G}} = \left(\partial \boldsymbol{r}_i / \partial \boldsymbol{x}_j\right)^{\alpha} \colon \mathbb{Z} \boldsymbol{H}^{\boldsymbol{m}} \to \mathbb{Z} \boldsymbol{H}^{\boldsymbol{q}}.$$

- Recall $\mathcal{W}^1(G) = \mathcal{V}^1(G) \cap \widehat{G}^0$ is a subvariety of $\widehat{G}^0 = \widehat{H} = (\mathbb{C}^{\times})^n$.
- Let $\check{W}^1(G)$ be the union of all codim. 1 components of $\mathcal{W}^1(G)$.
- Let $V(\Delta_G)$ be the hypersurface in $\widehat{H} = (\mathbb{C}^{\times})^n$ defined by Δ_G .

Theorem (DPS 2008)

• $\Delta_G = 0 \iff \mathcal{W}^1(G) = \widehat{H}$. In this case, $\check{\mathcal{W}}^1(G) = \emptyset$.

2 If $b_1(G) \ge 1$ and $\Delta_G \ne 0$, then

$$\check{\mathcal{W}}^{1}(\boldsymbol{G}) = \begin{cases} V(\Delta_{\boldsymbol{G}}) & \text{if } b_{1}(\boldsymbol{G}) > 1\\ V(\Delta_{\boldsymbol{G}}) \coprod \{1\} & \text{if } b_{1}(\boldsymbol{G}) = 1. \end{cases}$$

If $b_1(G) \ge 2$, then $\check{\mathcal{W}}^1(G) = \emptyset \iff \Delta_G \doteq \text{const.}$

Knots, links, and 3-manifolds

- Let *K* be a non-trivial knot in S^3 , with complement $X = S^3 \setminus K$, and $G = \pi_1(X, x_0)$.
- We have: $H = H_1(X, \mathbb{Z}) = \mathbb{Z}$, and $\Delta_G = \Delta_K \in \mathbb{Z}H = \mathbb{Z}[t^{\pm 1}]$ is the Alexander polynomial of the knot (J. Alexander 1928).
- Moreover, $\Delta_{\mathcal{K}}(1) = \pm 1$. Thus, $\check{\mathcal{W}}^1 = \mathcal{W}^1 \subset \mathbb{C}^{\times}$.
- Hence:

$$\mathcal{V}^1(X) = \left\{ z \in \mathbb{C}^{\times} \mid \Delta_{\mathcal{K}}(z) = \mathbf{0} \right\} \cup \{\mathbf{1}\}.$$

• More generally, let $L = (L_1, ..., L_n)$ be a link in S^3 , with complement $X = S^3 \setminus \bigcup_{i=1}^n L_i$. Then $H = \mathbb{Z}^n$ and

$$\mathcal{V}^1(X) = \{z \in (\mathbb{C}^{\times})^n \mid \Delta_L(z) = 0\} \cup \{1\},$$

where $\Delta_L = \Delta_L(t_1, \ldots, t_n)$ is the multi-variable Alex polynomial.

- Even more generally, let *M* be a compact, connected 3-manifold, with $G = \pi_1(M)$.
- Suppose either
 - **1** $\partial M \neq \emptyset$ and $\chi(\partial M) = 0$, or
 - 2 $\partial M = \emptyset$ and *M* is orientable.
- Theorem (DPS 2008), combined with results of (Eisenbud–Neumann 1985) and (McMullen 2002), yields:

 $\mathcal{V}^{1}(M) \setminus \{1\} = V(\Delta_{G}) \setminus \{1\}.$

Toric complexes and right-angled Artin groups

Given *L* simplicial complex on *n* vertices, define the *toric complex* T_L = Z_L(S¹, *) as the subcomplex of Tⁿ obtained by deleting the cells corresponding to the missing simplices of *L*:

$$T_L = \bigcup_{\sigma \in L} T^{\sigma}$$
, where $T^{\sigma} = \{x \in T^n \mid x_i = * \text{ if } i \notin \sigma\}$.

• Let $\Gamma = (V, E)$ be the graph with vertex set the 0-cells of *L*, and edge set the 1-cells of *L*. Then $\pi_1(T_L)$ is the *right-angled Artin group* associated to Γ :

$$G_{\Gamma} = \langle \mathbf{v} \in \mathbf{V} \mid \mathbf{v}\mathbf{w} = \mathbf{w}\mathbf{v} \text{ if } \{\mathbf{v}, \mathbf{w}\} \in \mathbf{E} \rangle.$$

• Properties:

- $\Gamma = \overline{K}_n \Rightarrow G_{\Gamma} = F_n$ $\Gamma = \Gamma' \coprod \Gamma'' \Rightarrow G_{\Gamma} = G_{\Gamma'} * G_{\Gamma''}$
- $\Gamma = K_n \Rightarrow G_{\Gamma} = \mathbb{Z}^n$ $\Gamma = \Gamma' * \Gamma'' \Rightarrow G_{\Gamma} = G_{\Gamma'} \times G_{\Gamma''}$

- Identify character group G_Γ = Hom(G_Γ, C[×]) with the algebraic torus (C[×])^V := (C[×])ⁿ.
- For each subset W ⊆ V, let (C[×])^W ⊆ (C[×])^V be the corresponding subtorus; in particular, (C[×])[∅] = {1}.

of a simplex σ in a subcomplex $K \subseteq L$.

In particular:

$$\mathcal{V}_1^1({\it G}_{\Gamma}) = \bigcup_{\substack{W\subseteq V\\ \Gamma_W \text{ disconnected}}} (\mathbb{C}^{\times})^W.$$

Problem

Compute the Alexander polynomial of a right-angled Artin group.

For example, $\Delta_{E_n} = 0$, for $n \ge 1$, while $\Delta_{\mathbb{Z}^n} \doteq 1$, for n > 1.

Recall that the *connectivity* of a graph $\Gamma = (V, E)$, denoted $\kappa(\Gamma)$, is the maximum integer *r* so that, for any subset $W \subset V$ with |W| < r, the induced subgraph on $V \setminus W$ is connected.

Proposition (S 2009)

$$\Delta_{G_{\Gamma}} \neq \text{const} \iff \kappa(\Gamma) = 1.$$

Proof.

- We know: V¹(G_Γ) consists of coordinate subspaces (C[×])^W, indexed by maximal subsets W ⊂ V such that Γ_W is disconnected.
- Thus, *V*¹(*G*_Γ) is non-empty if and only if Γ is connected and has a cut point, i.e., κ(Γ) = 1.
- If Γ has just 1 vertex, then κ(Γ) = 0; on the other hand, G_Γ = Z, and so Δ_{G_Γ} = 0.
- For all other graphs, b₁(G_Γ) ≥ 2, and Theorem (DPS 2008) yields the desired conclusion.