## Characteristic varieties

Alex Suciu

Northeastern University
Minicourse on Cohomology jumping loci and homological finiteness properties

Centro Ennio De Giorgi Pisa, Italy
May 10, 2010
(1) The character group
(2) The equivariant chain complex
(3) Homology jump loci
(4) Some examples
(5) Depth one characteristic varieties

6 Products and wedges
(7) The Alexander polynomial
(8) Knots, links, and 3-manifolds
(9) Toric complexes and right-angled Artin groups

## The character group

- Throughout, $X$ will be a connected CW-complex, with finite $k$-skeleton, for some $k \geq 1$. We may assume $X$ has a single 0 -cell, call it $x_{0}$.
- Let $G=\pi_{1}\left(X, x_{0}\right)$ be the fundamental group of $X$.
- The character group,

$$
\widehat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)
$$

is an algebraic group, with multiplication $\rho \cdot \rho^{\prime}(g)=\rho(g) \rho^{\prime}(g)$, and identity $G \rightarrow \mathbb{C}^{\times}, g \mapsto 1$.

- Let $G_{\mathrm{ab}}=G / G^{\prime} \cong H_{1}(X, \mathbb{Z})$ be the abelianization of $G$. The projection $\mathrm{ab}: G \rightarrow G_{\mathrm{ab}}$ induces an isomorphism $\widehat{G}_{\mathrm{ab}} \xrightarrow{\simeq} \widehat{G}$.
- The identity component, $\widehat{G}^{0}$, is isomorphic to a complex algebraic torus of dimension $n=\operatorname{rank} G_{a b}$.
- The other connected components are all isomorphic to $\widehat{G}^{0}=\left(\mathbb{C}^{\times}\right)^{n}$, and are indexed by the finite abelian group Tors $\left(G_{\mathrm{ab}}\right)$.
- $\widehat{G}$ parametrizes rank 1 local systems on $X$ :

$$
\rho: G \rightarrow \mathbb{C}^{\times} \quad \rightsquigarrow \quad \mathcal{L}_{\rho}
$$

the complex vector space $\mathbb{C}$, viewed as a right module over the group ring $\mathbb{Z} G$ via $a \cdot g=\rho(g) a$, for $g \in G$ and $a \in \mathbb{C}$.

## The equivariant chain complex

- Let $p: \widetilde{X} \rightarrow X$ be the universal cover. The cell structure on $X$ lifts to a cell structure on $\widetilde{X}$.
- Fixing a lift $\tilde{x}_{0} \in p^{-1}\left(x_{0}\right)$ identifies $G=\pi_{1}\left(X, x_{0}\right)$ with the group of deck transformations of $\tilde{X}$.
- Thus, we may view the cellular chain complex of $\widetilde{X}$,

$$
\cdots \longrightarrow c_{i+1}(\tilde{X}, \mathbb{Z}) \xrightarrow{\tilde{\partial}_{i+1}} c_{i}(\tilde{X}, \mathbb{Z}) \xrightarrow{\tilde{\partial}_{i}} c_{i-1}(\tilde{X}, \mathbb{Z}) \longrightarrow \cdots,
$$

as a chain complex of left $\mathbb{Z} G$-modules.

- The homology groups of $X$ with coefficients in $\mathcal{L}_{\rho}$ are defined as

$$
H_{*}\left(X, \mathcal{L}_{\rho}\right)=H_{*}\left(\mathcal{L}_{\rho} \otimes_{\mathbb{Z} G} C_{0}(\widetilde{X}, \mathbb{Z})\right) .
$$

- In concrete terms, $H_{*}\left(X, \mathcal{L}_{\rho}\right)$ may be computed from the chain complex of $\mathbb{C}$-vector spaces,

$$
\cdots \rightarrow C_{i+1}(X, \mathbb{C}) \xrightarrow{\tilde{\partial}_{i+1}(\rho)} C_{i}(X, \mathbb{C}) \xrightarrow{\tilde{\partial}_{i}(\rho)} C_{i-1}(X, \mathbb{C}) \rightarrow \cdots,
$$

where the evaluation of $\tilde{\partial}_{i}$ at $\rho$ is obtained by applying the ring homomorphism $\mathbb{Z} G \rightarrow \mathbb{C}, g \mapsto \rho(g)$ to each entry of $\tilde{\partial}_{i}$.

- Alternatively, consider the universal abelian cover, $X^{\text {ab }}$, and its equivariant chain complex, $C_{\bullet}\left(X^{\mathrm{ab}}, \mathbb{Z}\right)=\mathbb{Z} G_{a b} \otimes_{\mathbb{Z} G} C_{0}(\widetilde{X}, \mathbb{Z})$, with differentials $\partial_{i}^{\text {ab }}=\mathrm{id} \otimes \widetilde{\partial}_{i}$. The homology of $X$ with coefficients in the rank 1 local system given by $\rho \in \widehat{G}_{a b}=\widehat{G}$ is computed from similar chain complex, with differentials $\partial_{i}^{\mathrm{ab}}(\rho)=\tilde{\partial}_{i}(\rho)$.
- The identity $1 \in \widehat{G}$ yields the trivial local system, $\mathcal{L}_{1}=\mathbb{C}$, and $H_{*}(X, \mathbb{C})$ is the usual homology of $X$ with $\mathbb{C}$-coefficients. Denote by $b_{i}(X)=\operatorname{dim}_{\mathbb{C}} H_{i}(X, \mathbb{C})$ the ith Betti number of $X$.


## Homology jump loci

## Definition

The characteristic varieties of $X$ are the sets

$$
\mathcal{V}_{d}^{i}(X)=\left\{\rho \in \widehat{G} \mid \operatorname{dim}_{\mathbb{C}} H_{i}\left(X, \mathcal{L}_{\rho}\right) \geq d\right\}
$$

defined for all degrees $0 \leq i \leq k$ and all depths $d>0$.

- For each $i$, get stratification $\widehat{G} \supseteq \mathcal{V}_{1}^{i} \supseteq \mathcal{V}_{2}^{i} \supseteq \ldots$
- $1 \in \mathcal{V}_{d}^{i}(X) \Longleftrightarrow b_{i}(X) \geq d$.
- $\mathcal{V}_{1}^{0}(X)=\{1\}$ and $\mathcal{V}_{d}^{0}(X)=\emptyset$, for $d>1$.
- $\mathcal{V}_{d}^{1}(X)$ depends only on $G$ (in fact, only on $G / G^{\prime \prime}$ ), so we may write these sets as $\mathcal{V}_{d}(G)$.
- Define analogously $\mathcal{V}_{d}^{i}(X, \mathbb{k}) \subset \operatorname{Hom}\left(G, \mathbb{k}^{\times}\right)$, for arbitrary field $\mathbb{k}$. Then $\mathcal{V}_{d}^{i}(X, \mathbb{k})=\mathcal{V}_{d}^{i}(X, \mathbb{K}) \cap \operatorname{Hom}\left(G, \mathbb{k}^{\times}\right)$, for any extension $\mathbb{k} \subseteq \mathbb{K}$.


## Lemma

Each $\mathcal{V}_{d}^{i}(X)$ is a Zariski closed subset of the algebraic group $\widehat{G}$.

## Proof.

Let $R=\mathbb{C}\left[G_{a b}\right]$ be the coordinate ring of $\widehat{G}=\widehat{G}_{\mathrm{ab}}$. By definition, a character $\rho$ belongs to $\mathcal{V}_{d}^{i}(X)$ if and only if

$$
\operatorname{rank} \partial_{i+1}^{\mathrm{ab}}(\rho)+\operatorname{rank} \partial_{i}^{\mathrm{ab}}(\rho) \leq c_{i}-d
$$

where $c_{i}=c_{i}(X)$ is the number of $i$-cells of $X$. Hence,

$$
\begin{aligned}
\mathcal{V}_{d}^{i}(X) & =\bigcap_{r+s=c_{i}-d+1 ; r, s \geq 0}\left\{\rho \in \widehat{G} \mid \operatorname{rank} \partial_{i+1}^{\mathrm{ab}}(\rho) \leq r-1 \text { or rank } \partial_{i}^{\mathrm{ab}}(\rho) \leq s-1\right\} \\
& =V\left(\sum_{p+q=c_{i-1}+d-1 ; p, q \geq 0} E_{p}\left(\partial_{i}^{\mathrm{ab}}\right) \cdot E_{q}\left(\partial_{i+1}^{\mathrm{ab}}\right)\right),
\end{aligned}
$$

where $E_{q}(\varphi)=$ ideal of minors of size $a-q$ of $\varphi: R^{b} \rightarrow R^{a}$.

The characteristic varieties are homotopy-type invariants of a space:

## Lemma

Suppose $X \simeq X^{\prime}$. For each $i \leq k$, there is an isomorphism $\widehat{G^{\prime}} \cong \widehat{G}$, which restricts to isomorphisms $\mathcal{V}_{d}^{i}\left(X^{\prime}\right) \cong \mathcal{V}_{d}^{i}(X)$, for all $d>0$.

## Proof.

Let $f: X \rightarrow X^{\prime}$ be a (cellular) homotopy equivalence.
The induced homomorphism $f_{\sharp}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X^{\prime}, x_{0}^{\prime}\right)$, yields an

Lifting $f$ to a cellular homotopy equivalence, $\tilde{f}: \widetilde{X} \rightarrow \widetilde{X}^{\prime}$, defines isomorphisms $H_{i}\left(X, \mathcal{L}_{\rho o_{1}}\right) \rightarrow H_{i}\left(X^{\prime}, \mathcal{L}_{\rho}\right)$, for each $\rho \in \widehat{G^{\prime}}$. Hence, $\hat{f}_{\sharp}$ restricts to isomorphisms $\mathcal{V}_{d}^{i}\left(X^{\prime}\right) \rightarrow \nu_{d}^{i}(X)$.

## Example (The circle)

We have $\widetilde{S^{1}}=\mathbb{R}$.
Identify $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}=\langle t\rangle$ and $\mathbb{Z} \mathbb{Z}=\mathbb{Z}\left[t^{ \pm 1}\right]$. Then:

$$
\text { C. }\left(\widetilde{S^{1}}\right): 0 \longrightarrow \mathbb{Z}\left[t^{ \pm 1}\right] \xrightarrow{t-1} \mathbb{Z}\left[t^{ \pm 1}\right] \longrightarrow 0
$$

For $\rho \in \operatorname{Hom}\left(\mathbb{Z}, \mathbb{C}^{\times}\right)=\mathbb{C}^{\times}$, we get

$$
\text { C. }\left(\widetilde{S^{1}}\right) \otimes_{\mathbb{Z} \mathbb{Z}} \mathcal{L}_{\rho}: 0 \longrightarrow \mathbb{C} \xrightarrow{\rho-1} \mathbb{C} \longrightarrow 0
$$

which is exact, except for $\rho=1$, when $H_{0}\left(S^{1}, \mathbb{C}\right)=H_{1}\left(S^{1}, \mathbb{C}\right)=\mathbb{C}$. Hence:

$$
\begin{aligned}
& \mathcal{V}_{1}^{0}\left(S^{1}\right)=\mathcal{V}_{1}^{1}\left(S^{1}\right)=\{1\} \\
& \mathcal{V}_{d}^{i}\left(S^{1}\right)=\emptyset, \quad \text { otherwise } .
\end{aligned}
$$

## Example (The $n$-torus)

Identify $\pi_{1}\left(T^{n}\right)=\mathbb{Z}^{n}$, and $\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{C}^{\times}\right)=\left(\mathbb{C}^{\times}\right)^{n}$. Using the Koszul resolution $C_{0}\left(T^{n}\right)$ as above, we get

$$
\mathcal{V}_{d}^{i}\left(T^{n}\right)= \begin{cases}\{1\} & \text { if } d \leq\binom{ n}{i} \\ \emptyset & \text { otherwise } .\end{cases}
$$

## Example (Nilmanifolds)

More generally, let $M$ be a nilmanifold. An inductive argument on the nilpotency class of $\pi_{1}(M)$, based on the Hochschild-Serre spectral sequence, yields (MP 2009)

$$
\mathcal{V}_{d}^{i}(M)= \begin{cases}\{1\} & \text { if } d \leq b_{i}(M), \\ \emptyset & \text { otherwise }\end{cases}
$$

## Example (Wedge of circles)

Identify $\pi_{1}\left(V^{n} S^{1}\right)=F_{n}$, and $\operatorname{Hom}\left(F_{n}, \mathbb{C}^{\times}\right)=\left(\mathbb{C}^{\times}\right)^{n}$. Then:

$$
\mathcal{V}_{d}^{1}\left(\bigvee^{n} S^{1}\right)= \begin{cases}\left(\mathbb{C}^{\times}\right)^{n} & \text { if } d<n \\ \{1\} & \text { if } d=n \\ \emptyset & \text { if } d>n\end{cases}
$$

## Example (Orientable surface of genus $g>1$ )

Write $\pi_{1}\left(S_{g}\right)=\left\langle x_{1}, \ldots, x_{g}, y_{1}, \ldots, y_{g} \mid\left[x_{1}, y_{1}\right] \cdots\left[x_{g}, y_{g}\right]=1\right\rangle$, and identify $\operatorname{Hom}\left(\pi_{1}\left(S_{g}\right), \mathbb{C}^{\times}\right)=\left(\mathbb{C}^{\times}\right)^{2 g}$. Then:

$$
\mathcal{V}_{d}^{i}\left(S_{g}\right)= \begin{cases}\left(\mathbb{C}^{\times}\right)^{2 g} & \text { if } i=1, d<2 g-1, \\ \{1\} & \text { if } i=1, d=2 g-1,2 g, \text { or } i=2, d=1, \\ \emptyset & \text { otherwise. }\end{cases}
$$

## Depth one characteristic varieties

Most important for us will be the depth-1 characteristic varieties, $\mathcal{V}_{1}^{i}(X)$, and their unions up to a fixed degree,

$$
\mathcal{V}^{i}(X)=\bigcup_{j=0}^{i} \mathcal{V}_{1}^{j}(X)=\left\{\rho \in \widehat{G} \mid H_{j}\left(X, \mathcal{L}_{\rho}\right) \neq 0, \text { for some } j \leq i\right\}
$$

Get ascending filtration of the character group,

$$
\{1\}=\mathcal{V}^{0}(X) \subseteq \mathcal{V}^{1}(X) \subseteq \cdots \subseteq \mathcal{V}^{k}(X) \subseteq \widehat{G}
$$

These loci are the support varieties for the Alexander invariants of $X$. More precisely, view $H_{*}\left(X^{\mathrm{ab}}, \mathbb{C}\right)$ as a module over the group-ring $\mathbb{C}\left[G_{a b}\right]$. Then (PS 2010),

$$
\mathcal{V}^{i}(X)=V\left(\operatorname{ann}\left(\bigoplus_{j \leq i} H_{j}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right)
$$

We will also consider the varieties $\mathcal{W}_{1}^{i}(X)=\mathcal{V}_{1}^{i}(X) \cap \widehat{G}^{0}$ and

$$
\mathcal{W}^{i}(X)=\bigcup_{j=0}^{i} \mathcal{W}_{1}^{j}(X)=\mathcal{V}^{i}(X) \cap \widehat{G}^{0} .
$$

Get ascending filtration of the character torus of $G$,

$$
\{1\}=\mathcal{W}^{0}(X) \subseteq \mathcal{W}^{1}(X) \subseteq \cdots \subseteq \mathcal{W}^{k}(X) \subseteq \widehat{G}^{0} .
$$

Let $X^{\alpha} \rightarrow X$ be the maximal torsion-free abelian cover of $X$, corresponding to the canonical projection $\alpha: G \rightarrow H$, where

$$
H=G_{\mathrm{ab}} / \operatorname{Tors}\left(G_{\mathrm{ab}}\right)=\mathbb{Z}^{n}, \quad n=b_{1}(G) .
$$

Identify $\widehat{G}^{0}=\left(\mathbb{C}^{\times}\right)^{n}$ and $\mathbb{C}\left[\mathbb{Z}^{n}\right]=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$. Then,

$$
\mathcal{W}^{i}(X)=V\left(\operatorname{ann}\left(\bigoplus_{j \leq i} H_{j}\left(X^{\alpha}, \mathbb{C}\right)\right)\right) .
$$

## Products and wedges

The depth-1 characteristic varieties behave well with respect to products and wedges. More precisely:

- Let $X_{1}$ and $X_{2}$ be connected CW-complexes with finite $k$-skeleta, and with fundamental groups $G_{1}$ and $G_{2}$.
- Let $X=X_{1} \times X_{2}$; set $G=\pi_{1}(X)$.
- Identify $G=G_{1} \times G_{2}, \widehat{G}=\widehat{G}_{1} \times \widehat{G}_{2}, \widehat{G}^{0}=\widehat{G}_{1}^{0} \times \widehat{G}_{2}^{0}$.


## Proposition (PS 2010)

For all $i \leq k$,

$$
\mathcal{V}_{1}^{i}\left(X_{1} \times X_{2}\right)=\bigcup_{p+q=i} \mathcal{V}_{1}^{p}\left(X_{1}\right) \times \mathcal{V}_{1}^{q}\left(X_{2}\right)
$$

## Proof.

- Let $\widetilde{X}=\widetilde{X}_{1} \times \widetilde{X}_{2}$ be the universal cover. We have a $G$-equivariant isomorphism of chain complexes, $C_{0}(\widetilde{X}) \cong C_{0}\left(\widetilde{X}_{1}\right) \otimes_{\mathbb{Z}} C_{0}\left(\widetilde{X}_{2}\right)$.
- Given a character $\rho=\left(\rho_{1}, \rho_{2}\right) \in \widehat{G}_{1} \times \widehat{G}_{2}=\widehat{G}$, we obtain an iso $C_{\mathbf{0}}\left(X, \mathcal{L}_{\rho}\right) \cong C_{0}\left(X_{1}, \mathcal{L}_{\rho_{1}}\right) \otimes_{\mathbb{C}} C_{\mathbf{0}}\left(X_{2}, \mathcal{L}_{\rho_{2}}\right)$.
- Hence, $H_{i}\left(X, \mathcal{L}_{\rho}\right)=\bigoplus_{s+t=i} H_{s}\left(X_{1}, \mathcal{L}_{\rho_{1}}\right) \otimes_{\mathbb{C}} H_{t}\left(X_{2}, \mathcal{L}_{\rho_{2}}\right)$, and the conclusion follows.


## Corollary

$$
\begin{aligned}
& \mathcal{V}^{i}\left(X_{1} \times X_{2}\right)=\bigcup_{p+q=i} \mathcal{V}^{p}\left(X_{1}\right) \times \mathcal{V}^{q}\left(X_{2}\right) \\
& \mathcal{W}^{i}\left(X_{1} \times X_{2}\right)=\bigcup_{p+q=i} \mathcal{W}^{p}\left(X_{1}\right) \times \mathcal{W}^{q}\left(X_{2}\right)
\end{aligned}
$$

- Let $X=X_{1} \vee X_{2}$ (taken at the unique 0-cells); set $G=\pi_{1}(X)$.
- Identify $G=G_{1} * G_{2}, \widehat{G}=\widehat{G}_{1} \times \widehat{G}_{2}, \widehat{G}^{0}=\widehat{G}_{1}^{0} \times \widehat{G}_{2}^{0}$.
- (PS 2010) Suppose $X_{1}$ and $X_{2}$ have positive first Betti numbers. Then, for all $1 \leq i \leq k$,

$$
\mathcal{V}_{1}^{i}\left(X_{1} \vee X_{2}\right)= \begin{cases}\widehat{G}_{1} \times \widehat{G}_{2} & \text { if } i=1 \\ \mathcal{V}_{1}^{i}\left(X_{1}\right) \times \widehat{G}_{2} \cup \widehat{G}_{1} \times \mathcal{V}_{1}^{i}\left(X_{2}\right) & \text { if } i>1\end{cases}
$$

- Hence, $\mathcal{V}^{i}\left(X_{1} \vee X_{2}\right)=\widehat{G}$ and $\mathcal{W}^{i}\left(X_{1} \vee X_{2}\right)=\widehat{G}^{0}$.
- The condition $b_{1}\left(X_{s}\right)>0$ may be dropped if $i>1$, but not if $i=1$. E.g., take $X_{1}=S^{1}$ and $X_{2}=S^{2}$. Then $G_{1}=\mathbb{Z}, G_{2}=\{1\}$. Thus, $\widehat{G}=\mathbb{C}^{\times}$, yet $\mathcal{V}_{1}^{1}\left(S^{1} \vee S^{2}\right)=\{1\}$.


## The Alexander polynomial

- Recall the maximal torsion-free abelian cover, $q: X^{\alpha} \rightarrow X$, corresponding to $\alpha: G=\pi_{1}\left(X, x_{0}\right) \rightarrow H \cong \mathbb{Z}^{n}$.
- Define two modules over the Noetherian ring $\mathbb{Z} H \cong \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ :
- The Alexander module $A_{G}=H_{1}\left(X^{\alpha}, q^{-1}\left(x_{0}\right) ; \mathbb{Z}\right)$.
- The Alexander invariant $B_{G}=H_{1}\left(X^{\alpha}, \mathbb{Z}\right)$.
- These modules depend only on the group $G$ :
- $A_{G}=\mathbb{Z} H \otimes_{\mathbb{Z} G} I_{G}$, where $\epsilon: \mathbb{Z} G \rightarrow \mathbb{Z}, g \mapsto 1$ is the augmentation map, and $I_{G}=\operatorname{ker} \epsilon$.
- $B_{G}=\operatorname{ker}\left(A_{G} \rightarrow I_{H}\right)$.
- Define the Alexander polynomial of G:

$$
\Delta_{G}:=\operatorname{gcd}\left(E_{1}\left(A_{G}\right)\right) \in \mathbb{Z} H
$$

- If $G=\left\langle x_{1}, \ldots, x_{q} \mid r_{1}, \ldots, r_{m}\right\rangle$ is finitely presented, $\Delta_{G}$ is the gcd of all minors of size $q-1$ of the Alexander matrix,

$$
\Phi_{G}=\left(\partial r_{i} / \partial x_{j}\right)^{\alpha}: \mathbb{Z} H^{m} \rightarrow \mathbb{Z} H^{q} .
$$

- Recall $\mathcal{W}^{1}(G)=\mathcal{V}^{1}(G) \cap \widehat{G}^{0}$ is a subvariety of $\widehat{G}^{0}=\widehat{H}=\left(\mathbb{C}^{\times}\right)^{n}$.
- Let $\mathscr{W}^{1}(G)$ be the union of all codim. 1 components of $\mathcal{W}^{1}(G)$.
- Let $V\left(\Delta_{G}\right)$ be the hypersurface in $\widehat{H}=\left(\mathbb{C}^{\times}\right)^{n}$ defined by $\Delta_{G}$.


## Theorem (DPS 2008)

(1) $\Delta_{G}=0 \Longleftrightarrow \mathcal{W}^{1}(G)=\widehat{H}$. In this case, $\mathscr{W}^{1}(G)=\emptyset$.
(2) If $b_{1}(G) \geq 1$ and $\Delta_{G} \neq 0$, then

$$
\check{\mathcal{W}}^{1}(G)= \begin{cases}V\left(\Delta_{G}\right) & \text { if } b_{1}(G)>1 \\ V\left(\Delta_{G}\right) \amalg\{1\} & \text { if } b_{1}(G)=1 .\end{cases}
$$

(3) If $b_{1}(G) \geq 2$, then $\check{\mathcal{W}}^{1}(G)=\emptyset \Longleftrightarrow \Delta_{G} \doteq$ const.

## Knots, links, and 3-manifolds

- Let $K$ be a non-trivial knot in $S^{3}$, with complement $X=S^{3} \backslash K$, and $G=\pi_{1}\left(X, x_{0}\right)$.
- We have: $H=H_{1}(X, \mathbb{Z})=\mathbb{Z}$, and $\Delta_{G}=\Delta_{K} \in \mathbb{Z} H=\mathbb{Z}\left[t^{ \pm 1}\right]$ is the Alexander polynomial of the knot (J. Alexander 1928).
- Moreover, $\Delta_{K}(1)= \pm 1$. Thus, $\mathscr{W}^{1}=\mathcal{W}^{1}=\mathcal{V}^{1} \subset \mathbb{C}^{\times}$.
- Hence:

$$
\mathcal{V}^{1}(X)=\left\{z \in \mathbb{C}^{\times} \mid \Delta_{K}(z)=0\right\} \cup\{1\} .
$$

- More generally, let $L=\left(L_{1}, \ldots, L_{n}\right)$ be a link in $S^{3}$, with complement $X=S^{3} \backslash \bigcup_{i=1}^{n} L_{i}$. Then $H=\mathbb{Z}^{n}$ and

$$
\mathcal{V}^{1}(X)=\left\{z \in\left(\mathbb{C}^{\times}\right)^{n} \mid \Delta_{L}(z)=0\right\} \cup\{1\},
$$

where $\Delta_{L}=\Delta_{L}\left(t_{1}, \ldots, t_{n}\right)$ is the multi-variable Alex polynomial.

- Even more generally, let $M$ be a compact, connected 3-manifold, with $G=\pi_{1}(M)$.
- Suppose either
(1) $\partial M \neq \emptyset$ and $\chi(\partial M)=0$, or
(2) $\partial M=\emptyset$ and $M$ is orientable.
- Theorem (DPS 2008), combined with results of (Eisenbud-Neumann 1985) and (McMullen 2002), yields:

$$
\mathcal{V}^{1}(M) \backslash\{1\}=V\left(\Delta_{G}\right) \backslash\{1\} .
$$

## Toric complexes and right-angled Artin groups

- Given $L$ simplicial complex on $n$ vertices, define the toric complex $T_{L}=\mathcal{Z}_{L}\left(S^{1}, *\right)$ as the subcomplex of $T^{n}$ obtained by deleting the cells corresponding to the missing simplices of $L$ :

$$
T_{L}=\bigcup_{\sigma \in L} T^{\sigma}, \quad \text { where } T^{\sigma}=\left\{x \in T^{n} \mid x_{i}=* \text { if } i \notin \sigma\right\}
$$

- Let $\Gamma=(\mathrm{V}, \mathrm{E})$ be the graph with vertex set the 0 -cells of $L$, and edge set the 1 -cells of $L$. Then $\pi_{1}\left(T_{L}\right)$ is the right-angled Artin group associated to $\Gamma$ :

$$
\left.G_{\Gamma}=\langle v \in V| v w=w v \text { if }\{v, w\} \in E\right\rangle .
$$

- Properties:
- $\Gamma=\bar{K}_{n} \Rightarrow G_{\Gamma}=F_{n}$
- $\Gamma=\Gamma^{\prime} \amalg^{\prime \prime} \Rightarrow G_{\Gamma}=G_{\Gamma^{\prime}} * G_{\Gamma^{\prime \prime}}$
- $\Gamma=K_{n} \Rightarrow G_{\Gamma}=\mathbb{Z}^{n}$
- $\Gamma=\Gamma^{\prime} * \Gamma^{\prime \prime} \Rightarrow G_{\Gamma}=G_{\Gamma^{\prime}} \times G_{\Gamma^{\prime \prime}}$
- Identify character group $\widehat{G}_{\Gamma}=\operatorname{Hom}\left(G_{\Gamma}, \mathbb{C}^{\times}\right)$with the algebraic torus $\left(\mathbb{C}^{\times}\right)^{\mathrm{V}}:=\left(\mathbb{C}^{\times}\right)^{n}$.
- For each subset $\mathrm{W} \subseteq \mathrm{V}$, let $\left(\mathbb{C}^{\times}\right)^{\mathrm{W}} \subseteq\left(\mathbb{C}^{\times}\right)^{\mathrm{V}}$ be the corresponding subtorus; in particular, $\left(\mathbb{C}^{\times}\right)^{\emptyset}=\{1\}$.


## Theorem (PS 2009)

$$
\mathcal{V}_{d}^{i}\left(T_{L}\right)=\bigcup_{\sum_{\sigma \in L_{V} \backslash W} \operatorname{dim}_{\mathbb{C}} \widetilde{H}_{i-1-|\sigma|}\left(\mathbb{k}_{L_{W}}(\sigma), \mathbb{C}\right) \geq d}\left(\mathbb{C}^{\times}\right)^{\mathrm{W}},
$$

where $L_{\mathrm{W}}$ is the subcomplex induced by $L$ on W , and $\mathrm{l}_{K}(\sigma)$ is the link of a simplex $\sigma$ in a subcomplex $K \subseteq L$.

In particular:

$$
\mathcal{V}_{1}^{1}\left(G_{\Gamma}\right)=\bigcup_{\substack{\mathrm{W} \subseteq \mathrm{~V} \\ \Gamma_{\mathrm{W}} \text { disconnected }}}\left(\mathbb{C}^{\times}\right)^{\mathrm{W}}
$$

## Problem

Compute the Alexander polynomial of a right-angled Artin group.
For example, $\Delta_{F_{n}}=0$, for $n \geq 1$, while $\Delta_{\mathbb{Z}^{n}} \doteq 1$, for $n>1$.
Recall that the connectivity of a graph $\Gamma=(\mathrm{V}, \mathrm{E})$, denoted $\kappa(\Gamma)$, is the maximum integer $r$ so that, for any subset $\mathrm{W} \subset \mathrm{V}$ with $|\mathrm{W}|<r$, the induced subgraph on $\mathrm{V} \backslash \mathrm{W}$ is connected.

## Proposition (S 2009)

$$
\Delta_{G_{\Gamma}} \neq \text { const } \Longleftrightarrow \kappa(\Gamma)=1 .
$$

## Proof.

- We know: $\mathcal{V}^{1}\left(G_{\Gamma}\right)$ consists of coordinate subspaces $\left(\mathbb{C}^{\times}\right)^{W}$, indexed by maximal subsets $\mathrm{W} \subset \mathrm{V}$ such that $\Gamma_{\mathrm{W}}$ is disconnected.
- Thus, $\check{V}^{1}\left(G_{\Gamma}\right)$ is non-empty if and only if $\Gamma$ is connected and has a cut point, i.e., $\kappa(\Gamma)=1$.
- If $\Gamma$ has just 1 vertex, then $\kappa(\Gamma)=0$; on the other hand, $G_{\Gamma}=\mathbb{Z}$, and so $\Delta_{G_{\Gamma}}=0$.
- For all other graphs, $b_{1}\left(G_{\Gamma}\right) \geq 2$, and Theorem (DPS 2008) yields the desired conclusion.

