## Rational periodic points for quadratic maps

## Jung Kyu Canci

Let $K$ be a number field. Let $S$ be a finite set of places of $K$ containing all the archimedean ones. Let $R_{S}$ be the ring of $S$-integers of K. We consider endomorphisms of mathbb $P_{1}$ of degree 2 , defined over $K$, with good reduction outside $S$ (a definition involving the resultant of two polynomials). We will show that there exist only finitely many such endomorphisms, up to conjugation by $\mathrm{PGL}_{2}\left(\mathrm{R}_{S}\right)$, admitting a periodic point in mathbb $P_{1}(K)$ of order i 3 . Also, all but finitely many classes with a periodic point in mathbb $P_{1}(K)$ of order 3 are parametrized by an irreducible curve.

