PRIME NUMBERS IN INTERVALS OF LOGARITHMIC LENGTH

ALESSANDRO ZACCAGNINI

Let X be large. We will first give a new estimate for the integral moments of primes in short intervals of the type $(p, p+h]$, where $p \leq X$ is a prime number and $h=o(X)$. Then we will use this to prove that for every $\lambda>1 / 2$ there exists a positive proportion of primes $p \leq X$ such that the interval $(p, p+\lambda \log X]$ contains at least a prime number, with an explicit bound for the proportion. As a consequence we improve Cheer and Goldston's result (1987) on the size of real numbers $\lambda>1$ with the property that there is a positive proportion of integers $m \leq X$ such that the interval $(m, m+\lambda \log X]$ contains no primes. We also prove other results concerning the moments of the gaps between consecutive primes and about the proportion of integers $m \leq X$ such that the interval $(m, m+\lambda \log X]$ contains at least a prime number. We discuss similar results, assuming the validity of the Riemann Hypothesis and of a form of the Montgomery pair correlation conjecture.

This is joint work with Danilo Bazzanella (Politecnico di Torino) and Alessandro Languasco (Università di Padova).

Dipartimento di Matematica, Università di Parma, Parco Area delle Scienze, 53A, 43100 Parma, Italy

E-mail address: alessandro.zaccagnini@unipr.it

