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Introduction

A story says that when Lebesgue was young, he once followed a
class where Darboux was proving that any developable surface
is ruled.
Lebesgue then threw a crumpled paper on the table:

Here is a developable surface. Where is the ruling ?

Darboux was doing differential geometry. Lebesgue observed
that in nature, surfaces are rarely smooth.
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Can we unify instead of opposing the smooth differential
geometry of Darboux and the crumpled geometry of Lebesgue ?
Is there a non trivial theory encompassing all surfaces one may
reasonably conceive ?

In this talk, I would like to sketch the solution that A.D.
Alexandrov and his students in Leningrad have proposed to this
problem in the years 1940-1970.

Alexandre Danilovich Alexandrov

(1912-1999)
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Let us start with the following:

Problem 1.

(a) Is every smooth surface a limit of a sequence of polyhedral
surfaces?

(b) Is every polyhedral surface a limit of a sequence of smooth
surfaces?

(c) What are the geometric invariant which converge under
these limits?

A smooth surface is a 2-dimensional Riemannian manifold and a

polyhedral surface is a metric space which is locally isometric to a

2-dimensional polyhedron.
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The Géode of the Cité des Sciences in Paris is a beautiful
concrete exmple of a polyhedral approximation of the round
2-sphere.
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The area is not a continuous functional. In General:

lim sup
i→∞

Area(Si ) > Area(lim Si ).

The H. A. Schwarz lantern is a
famous example of a sequence
of (non convex) polyhedron Pi

converging to an cylindre with

lim
i→∞

Aire(Pi ) = ∞
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Let us reformulate our problem :

Problem 1’. Let us fix a topological surface S (say oriented
and closed). We want to define a space M(S) containing all
‘reasonable’ metrics on S and we wish to endow M(S) with a
topology for which both polyhedral metrics and smooth
Riemannian metrics are dense subsets.

We also want to describe those geometric invariants which
define continuous function on M(S).
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Definition of Alexandrov
surfaces

Definition A metric with bounded integral curvature on S in
the sense of Alexandrov is a continuous function

d : S × S → R

such that

(i) d is a distance and this distance induces the manifold
topology on S ;

(ii) the metric d is geodesic, i.e. every pair of points x , y ∈ S
can be joined by a curve of length ` = d(x , y);

(iii) the distance d on S is a uniform limit of a sequence of
distances associated to Riemannian metrics on S for which
the absolute value of the curvature is uniformly bounded.

We shall explain the third condition.
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Definition (uniform distance)
Denote by Met(S) the set of metrics on S satisfying conditions
(i) and (ii). The uniform distance between d1, d2 ∈ Met(S) is
defined by

D(d1, d2) = sup{|d1(x , y)− d2(x , y)| : x , y ∈ S}.
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A review on Riemannian surfaces

The metric d ∈ Met(S) is Riemannian if a smooth structure is
given on S as well as a positive definite 2-tensor
g ∈ Γ(S2T ∗(S)) such that

d(x , y) = inf

∫ 1

0

√
g(γ̇(t), γ̇(t))dt,

where the infimum is taken on all path γ : [0, 1] → S joining x
to y .

On any small domain U ⊂ S , on can find a moving coframe
θ1, θ2 ∈ Ω1(U) such that θ1 ∧ θ2 > 0 and

g = θ1 ⊗ θ1 + θ2 ⊗ θ2.
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the Hodge star operator ∗ : Ωk(S) → Ω2−k(S) (k = 0, 1, 2) is
defined by the conditions

∗(1) = θ1∧θ2, ∗(θ1∧θ2) = 1, ∗θ1 = θ2, ∗θ2 = −θ1

The connexion form associated to the coframe θ1, θ2 is the
1-form ω ∈ Ω1(U) given by

ω = −(∗dθ1)θ1 − (∗dθ2)θ2, (1)

it is the unique 1-form on U such that the Elie Cartan structure
equations {

dθ1 = −ω ∧ θ2

dθ2 = ω ∧ θ1

hold.
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Ww then define the area measure ant the curvature measure by

dA = θ1 ∧ θ2 and dω

We easily check that dA and dω do not depend on the chosen
coframe θ1, θ2 ∈ Ω1(U) and are thus globally defined 2-forms
(caution: these forms are not exact !).

Gauss-Bonnet Formula∫
S

dω = 2πχ(S).
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The Gauss curvature K : S → R is the Radon Nikodym
derivative of dω against dA:

dω = KdA ⇔ K = ∗dω

We also define

dω+ = K+dAg , dω− = K−dAg et d |ω| = |K |dAg ,

(where K+ = max{K , 0} and K− = max{−K , 0}).

Observe that

dω = dω+ − dω−, d |ω| = dω+ + dω−.
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We can now complete our definition :

Definition A metric with bounded curvature in the sense of
Alexandrov on S is a continuous function

d : S × S → R

such that

(i) d is a distance and this
distance defines the manifold
topology on S ;

(ii) the metric d is geodesic, i.e.
every pair of points x , y ∈ S
can be joined by a curve of
length ` = d(x , y);

(iii) the distance d on S is a
uniform limit of a sequence of
distances associated to
Riemannian metrics on S for
which the absolute value of the
curvature is uniformly
bounded.

Condition (iii) says that there ex-
ists a sequence of smooth Rie-
mannian metrics {gj} on S such
that

D(dgj , d) → 0

and

sup
j∈N

Z
S

dω+
j < ∞.
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The Gauss-Bonnet formula implies that
∫
S d |ωj | is also

bounded. By compactness, there exists then a Radon measure
dω on S and a subsequence {gj ′} of {gj} such that

dωgj′ → dω (weakly)

Theorem

The Radon measure dω = limj ′ dωgj′ is well defined on the
metric space (S , d), it is independent of the chosen sequence
{gj}.

Definition The limit measure dω is called the curvature
measure of the Alexandrov surface (S , d).
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Alexandrov shows that we can construct the measure dω
directly from the metric d onS without referring to the
Riemannian approximation.

The idea of the construction is to triangulate the surface by
(small) geodesic triangles and measure in each triangle the
angular excess.
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A glueing construction

Let us consider a finite collection {T1,T2, . . . ,Tm} Riemannian
triangles, i.e. manifolds homeomorphic to a disk equipped with
a C 2 Riemannian metric with 3 corners.

Let us glue these triangles pairwise according to a prescribed
triangulation of our surface S . Two adjacent sides being
identified by an isometry.
We thus obtain a length space homeomorphic to S which is an
Alexandrov surface whose curvature measure is given by

dω = dω0 + dω1 + dω2,
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where dω2 is absolutely continuous with respect to the area
measure and is given by

dω2 = KdA

in the interior of each triangle.

The measure dω0 is a discrete measure supported by the
vertices of the triabgulation and such that for each vertex p,
one has

ω0({p}) = 2π − (sum of the angles of all Ti incident with p).

And dω1 is supported by the edges of the triangulation, on
each edge a = Ti ∩ Tj , we have

dω1 = (k+ − k−)ds

where k+ et k− are the geodesic curvatures of a seen in each
adjacent triangle and coherently oriented.
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Polyhedral surfaces

As a special case: a polyhedral surface is a surface which can
be obtained by gluing euclidean flat triangles.

The curvature measure is then
concentrated on the vertices
and near any vertex, the
surface is locally isometric with
an euclidean cone.

For this reasons, polyhedral surfaces are also called flat surfaces
with conical singularities. They are exactly those Alexandrov
surfaces whose curvature measure is discrete.
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Exemple : the cube
Let us consider the surface of a cube.
The faces are flat and thus dω2 = 0,
the edges are geodesic within both of
their adjacent sides, hence dω1 = 0.
The eight vertices are each incident
with 3 angles of π

2 radians, we thus
have

ω(p) = 2π − 3
π

2
=

π

2

at each vertex.

We easily check Gauss-Bonnet:∫
S

dω =

∫
S

dω0 = 8× π

2
= 4π = 2πχ(S2).
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Exemple 2 : a cylindre

(courtesy of Andy Warhol)

A food can is an euclidean cylinder of
radius r and height h together with its
top and its bottom which are euclidean
disks D1,D2 of radius r . The cylinder
and both disks are flat, thus the
curvature is concentrated on the circles
bounding the disks. These circles are
geodesics in the cylinder and they have
constant geodesic curvature k = 1

r in
the disks Di .
We thus have dω0 = dω2 = 0 and

dω1 =
1

r
ds|∂D1

+
1

r
ds|∂D2

.

We again check Gauss-Bonnet:∫
S

dω =

∫
S

dω1 =
1

r
Length(∂D1)+

1

r
Length(∂D2) =

1

r
(2πr+2πr) = 4π.
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Conformal structures of smooth surfaces

Let us return to smooth surfaces

Definitions a Riemannian metric g̃ on S is a conformal
deformation of g if there exists a function u : S → R such that

g̃ = e2ug .

If u is constant, on says that g̃ is homothetic to g .

A local coordinate system (x , y) on an open set U ⊂ S is
conformal (isothermal) for the metric g if there exists a
function ρ : U → R such that

g = ρ(x , y)(dx2 + dy2).



Surfaces with
bounded
integral

curvature in
the sense of
Alexandrov

Marc
Troyanov -

EPFL

Introduction

Definition

Gluing

Conformal
structures of
smooth
surfaces

Potential

Convergence
theorems

Conformal
structure of
Alexandrov
surfaces

Definition. The Laplacien of u with respect to the metric g is

∆gu = − ∗ d ∗ du,

i.e. ∆gu dA = −d ∗ du.

It is in elliptic operator, it writes in coordinate as

∆gu = − 1√
det(gij)

2∑
µ,ν=1

∂

∂xµ

(
gµν

√
det(gij) ·

∂u

∂xν

)
.

In conformal coordinates, if g = ρ(x , y)(dx2 + dy2) then

∆gu = − 1

ρ(x , y)

(
∂2u

∂x2
+

∂2u

∂y2

)
.
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Proposition

Every smooth Riemannian metric on a surface S admits
conformal coordinates in a neighborhood of any point.

Proof. Let U ⊂ S be an open set where a moving coframe
θ1, θ2 ∈ Ω1(U) is defined, i.e. g = (θ1)2 + (θ1)2. Then
θ̃1 = euθ1, θ̃2 = euθ2 is a coframe for the metric g̃ = e2ug ,
and the connection forms ω et ω̃ are related by

ω̃ = ω − ∗du.

Thus
d ω̃ = dω − d ∗ du. (2)
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But we clearly have

dA = θ1 ∧ θ2 dÃ = θ̃1 ∧ θ̃2 = e2udA

The equation (2) thus writes

K̃ e2u = K + ∆gu. (3)

Choose a local solution of u : U → R such that ∆gu = −K ,
then g̃ = e2ug is flat and we can thus find euclidean
coordinates x , y around each point of U. In such coordinates
g̃ = dx2 + dy2 and therefore

g = e−2u(dx2 + dy2).
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Corollary

Every Riemannian metric g on a smooth oriented surface
defines a complex structure on that surface (= structure of
Riemann surface).

Theorem (Poincare-Koebe Uniformization theorem)

Every Riemannian metric g on a smooth oriented surface is a
conformal deformation of a metric h with constant curvature

Proof. Solve
K̃ e2u = K + ∆gu.

With K = +1,−1, 0 according to the sign of χ(S).
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Green function and potential

The inverse of the laplacien is given by the Green function:

Theorem

Let (S , h) be a closed smooth Riemannian surface. There
exists a unique function G : S × S → R ∪ {+∞} such that

(a) G is C∞ on S × S \ {(x , x) | x ∈ S};
(b) G (x , y) = G (y , x);

(c) |G (x , y)| ≤ C · (1 + | log d(x , y)|);

(d)

∫
S

G (x , y)dAh(y) = 0;

(e) For any u ∈ C 2(S), we have

u(x) =

∫
S

G (x , y)∆u(y)dAh(y) +
1

area(S)

∫
S

u(y)dAh(y).
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Proposition

If µ is a Radon (signed) measure on S such that
∫
S dµ = 0,

then the function

u(x) =

∫
S

G (x , y)dµ(y)

satisfies
∆u = µ

in the weak sense.

Definition The function u is called the potential of the Radon
measure dµ with respect to the metric h.
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We note V (S , h) the space of functions u ∈ L1(S) such that
µ = ∆hu is a measure. For u ∈ V (S , h) and x , y ∈ S , we set

dh,u(x , y) = inf

{∫ 1

0
eu(α(t))|α̇(t)|hdt

∣∣ α ∈ C(x , y)

}
(4)

where C(x , y) is the set of C 1-paths α : [0, 1] → S joining x to
y .
Then dh,u is a pseudo-metric, i.e. dh,u(x , y) is symetric and
satisfies the triangular inequality.
Furthermore 0 ≤ dh,u(x , y) ≤ ∞ for any x , y ∈ S .
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Proposition (Reshetnyak)

The pseudo-metric dh,u is separating, i.e. dh,u(x , y) > 0 if
x 6= y. Furthermore dh,u(x , y) < ∞ for any pair of points
x , y ∈ S such that µ({x}) < 2π and µ({y}) < 2π where µ is
the measure ∆hu.

We shall see later that (S , dh,u) is a surface with bounded
integral curvature in the sense of Alexandrov
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Summary: If (S , h) is a closed Riemannian surface and µ is a
Radon measure on S of zero integral and such that
µ({x}) < 2π for any x ∈ S , and u is the potential of µ, then
g = e2uh is a singular Riemannian metric on S for which the
associated pseudo-distance is a true distance.
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Remark A point x such that µ({x})) = ∆hu({x}) = 2π gives
rise to cusp. It can (bust must not) be an infinite distance
away.
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Convergence theorems

The curvature measure of an Alexandrov depends continuously
on the metric:

Theorem (Alexandrov)

Let (S , d) be a closed surface with bounded integral curvature
in the sense of Alexandrov. If {dj} is a sequence of metrics
with bounded integral curvature converging to d in the uniform
topology, then the curvature measure of (S , d) is the weak
limit of the curvature measures of {(S , dj)}, i.e.

D(dj , d) → 0 =⇒ dωj
weakly−→ dω
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The converse also holds, provides the conformal structure be
fixed and no cusp be allowed:

Theorem (Reshetnyak, 1960)

Let (S , h) be a closed smooth Riemannian surface {dµ+
n },

{dµ−n } two sequences of Radon measures on S converging
weakly to dµ+ = limn→∞ dµ+

n and dµ− = limn→∞ dµ−n .
Assume that µ+({p}) < 2π for any point p ∈ S. Let un be the
potential of dµn = dµ+

n + dµ−n and u be the potential of
dµ = dµ+ + dµ−, then

dh,un → dh,u

in the uniform topology.
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Corollary

Let (S , h) be a closed smooth Riemannian surface and µ be a
Radon measure on S such that

∫
S dµ = 0 and µ({x}) < 2π for

any x ∈ S. Let u be the potential of µ.
Then the metric dh,u has bounded integral curvature in the
sense of Alexandrov.
The curvature measure of (S , dh,u) is

dω = KhdAh + dµ. (5)

Proof Choose a sequence of smooth measures dµj = ϕjdAh

converging to dµ and such that
∫
S dµj = 0. Let uj be the

potential of dµj , then gj = e2uj h is a smooth Riemannian
metric and the associated distances dj converge to dh,u for the
uniform topology by the Reshetnyak theorem. Thus (S , dh,u) is
a surface with bounded integral curvature in the sense of
Alexandrov by definition. The identity (5) follows then from
(3) by continuity.
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The conformal structure is determined by the metric:

Theorem (Conformal rigidity)

Let (S , h) et (S ′, h′) be two smooth Riemannian surfaces and
u ∈ V (S , h), u′ ∈ V (S ′, h′).
Denote by dh,u and dh′,u′ the Alexandrov metrics correponding
to euh and eu′h′.
Then any isometry f : (S , dh,u) → (S ′, dh′,u′) is a conformal
transformation from (S , h) to (S ′, h′).

The proof follows from a theorem of Menchoff (1937) which
says that any 1-quasi-conformal map is conformal.
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Conformal structure of
Alexandrov surfaces

Reshetnyak (and Huber) has deduced from his theorem that
any metric with bounded integral curvature on a surface S
determines a unique conformal structure on S

Theorem

Let (S , d) be an Alexandrov surface without cusp. Then there
exists a smooth Riemannian metric h and a function
u ∈ V (S , h) such that

d = dh,u.
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Corollary

Any closed oriented surface (S , d) with bounded integral
curvature without cusp determines a unique complex structure
on S.

Proof. By the previous theorem, one can write d as d = dh,u

where h is Riemannian and u ∈ V (S , h). The result on
conformal (isothermal) coordinates allows us to introduce a
well defined complex structure on S and the conformal rigidity
theorem says that this complex structure depends on the metric
d only.
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Summary: A metric with bounded integral curvature without
cusp on a closed oriented surface S determines the following
data:

(i) A conformal structure on S ;

(ii) The curvature measure dω.

Conversely:

Theorem

For any conformal structure on S and any Radon measure
dωsuch that

∫
S dω = 2πχ(S) and ω({x}) < 2π for any x,

there exists an Alexandrov metric on S associated to this
conformal structure and whose curvature measure is given by
dω.
This Alexandrov metric is unique up to homothety.



Surfaces with
bounded
integral

curvature in
the sense of
Alexandrov

Marc
Troyanov -

EPFL

Introduction

Definition

Gluing

Conformal
structures of
smooth
surfaces

Potential

Convergence
theorems

Conformal
structure of
Alexandrov
surfaces

Proof. Fix a conformal structure on S and represent it by a
smooth Riemannian metric h with constant curvature. Let
dµ = dω − KhdAh and u ∈ V (S , h) be the potential of dµ.
Then the metric dh,u has the desired properties.

To prove uniqueness, consider another Alexandrov metric d ′ on
S . By Reshetnyak’s theorem, there exists a Riemannian metric
h′ on S and u′ ∈ V (S ′, h′) with d ′ = dh′,u′ . The conformal
Rigidity implies that h and h′ are conformally equivalent, i.e.
there exists v ∈ C∞(S) such that h′ = e2vh. Replacing u′ by
u′ + v if necessary, one may assume that h = h′.
We thus have d ′ = dh,u′ with curvature measure dω, thus

∆hu
′ = dω − KhdAh = ∆hu.

Therefore ∆h(u
′ − u) = 0 and (u′ − u) must be constant.
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This results can be seen as a classification theorem for
Alexandrov surfaces .

Let S be an oriented closed surface. Denote by M0(S) the
space of Alexandrov metrics on S without cusps, C(S) the
space of conformal structures and R2π(S) the space of Radon
measures dω on S such that∫

S
dω = 2πχ(S) and ω({x}) < 2π for all x ∈ S .

The preceeding theorem says that

M0(S) = C(S)×R2π(S)× R+.

(where R+ controls the homothety factor).

Note that the space of Radon measure on S is metrizable and
locally compact, and that the space of conformal structures is
well understood via the viewpoint of Teichmüller theory.
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Corollary

Let S be a closed surface, x1, x2, · · · , xn be points on S and
θ1, θ2, · · · θn > 0. Assume

∑
i (2π − θi ) = 2πχ(S), then for any

conformal structure on S, there exists a polyhedral metric on S
with conical singularity of cone angle θi at xi (i = 1, · · · , n).
This metric is unique up to homothety

Proof. Apply the previous theorem to the discrete measure

dω =
∑

i

(2π − θi )δxi .
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More generally:

Corollary

Any Radon measure dω on S such that
∫
S dω = 2πχ(S) and

ω({x}) < 2π for all x is the curvature measure of an
Alexandrov metric.
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Corollary

Every Alexandrov surface is a limit of a sequence of polyhedral
surfaces.

Proof. Approximate the curvature measure of the given
Alexandrov surface by a sequence of discrete measures.

Recall that, by definition, every Alexandrov surface is a limit of
a sequence of smooth Riammanian surfaces.
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Grazie per la Vostra attenzione !
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